EST and EST-SSR marker resources for Iris

Author:

Tang Shunxue,Okashah Rebecca A,Cordonnier-Pratt Marie-Michele,Pratt Lee H,Ed Johnson Virgil,Taylor Christopher A,Arnold Michael L,Knapp Steven J

Abstract

Abstract Background Limited DNA sequence and DNA marker resources have been developed for Iris (Iridaceae), a monocot genus of 200–300 species in the Asparagales, several of which are horticulturally important. We mined an I. brevicaulis-I. fulva EST database for simple sequence repeats (SSRs) and developed ortholog-specific EST-SSR markers for genetic mapping and other genotyping applications in Iris. Here, we describe the abundance and other characteristics of SSRs identified in the transcript assembly (EST database) and the cross-species utility and polymorphisms of I. brevicaulis-I. fulva EST-SSR markers among wild collected ecotypes and horticulturally important cultivars. Results Collectively, 6,530 ESTs were produced from normalized leaf and root cDNA libraries of I. brevicaulis (IB72) and I. fulva (IF174), and assembled into 4,917 unigenes (1,066 contigs and 3,851 singletons). We identified 1,447 SSRs in 1,162 unigenes and developed 526 EST-SSR markers, each tracing a different unigene. Three-fourths of the EST-SSR markers (399/526) amplified alleles from IB72 and IF174 and 84% (335/399) were polymorphic between IB25 and IF174, the parents of I. brevicaulis × I. fulva mapping populations. Forty EST-SSR markers were screened for polymorphisms among 39 ecotypes or cultivars of seven species – 100% amplified alleles from wild collected ecotypes of Louisiana Iris (I.brevicaulis, I.fulva, I. nelsonii, and I. hexagona), whereas 42–52% amplified alleles from cultivars of three horticulturally important species (I. pseudacorus, I. germanica, and I. sibirica). Ecotypes and cultivars were genetically diverse – the number of alleles/locus ranged from two to 18 and mean heterozygosity was 0.76. Conclusion Nearly 400 ortholog-specific EST-SSR markers were developed for comparative genetic mapping and other genotyping applications in Iris, were highly polymorphic among ecotypes and cultivars, and have broad utility for genotyping applications within the genus.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference50 articles.

1. Lyte C, Maynard P, Ellis JR, Service N, Rix M, Grey-Wilson C, Dickson-Cohen VC, Linnegar S, Bowley ME, Blanco-White A, Cohen O, Davis A, Jury S, Innes C, Christiansen H, Mathew B, Killens WR, Waddick JW, King C: A Guide to Species Irises: Their Identification and Cultivation. Cambridge, United Kingdom: Cambridge UniversityPress; 1997.

2. Arnold ML, Bennett BD, Zimmer EA: Natural hybridization between Iris fulva and Iris hexagona: pattern of ribosomal DNA variation. Evolution. 1990, 44: 1512-1521. 10.2307/2409333.

3. Mitra J: Karyotype analysis of Bearded Iris. Botanical Gazette. 1956, 117: 265-293. 10.1086/335916.

4. Randolph LF, Mitra J, Nelson IS: Cytotaxonomic studies of Louisiana Irises. Botanical Gazette. 1961, 123: 125-133. 10.1086/336137.

5. Rodionenko GI: The genus Iris L.: questions of morphology, biology, evolution, and systematics. London, United Kingdom: British Iris Society; 1987.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3