Citramalic acid and salicylic acid in sugar beet root exudates solubilize soil phosphorus

Author:

Khorassani Reza,Hettwer Ursula,Ratzinger Astrid,Steingrobe Bernd,Karlovsky Petr,Claassen Norbert

Abstract

Abstract Background In soils with a low phosphorus (P) supply, sugar beet is known to intake more P than other species such as maize, wheat, or groundnut. We hypothesized that organic compounds exuded by sugar beet roots solubilize soil P and that this exudation is stimulated by P starvation. Results Root exudates were collected from plants grown in hydroponics under low- and high-P availability. Exudate components were separated by HPLC, ionized by electrospray, and detected by mass spectrometry in the range of mass-to-charge ratio (m/z) from 100 to 1000. Eight mass spectrometric signals were enhanced at least 5-fold by low P availability at all harvest times. Among these signals, negative ions with an m/z of 137 and 147 were shown to originate from salicylic acid and citramalic acid. The ability of both compounds to mobilize soil P was demonstrated by incubation of pure substances with Oxisol soil fertilized with calcium phosphate. Conclusions Root exudates of sugar beet contain salicylic acid and citramalic acid, the latter of which has rarely been detected in plants so far. Both metabolites solubilize soil P and their exudation by roots is stimulated by P deficiency. These results provide the first assignment of a biological function to citramalic acid of plant origin.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference41 articles.

1. Bhadoria PBS, Steingrobe B, Claassen N, Leibersbach H: Phosphorus efficiency of wheat and sugar beet seedlings grown in soils with mainly calcium, or iron and aluminium phosphate. Plant Soil. 2002, 264: 41-52.

2. Kovar JL, Claassen N: Soil-root interactions and phosphorus nutrition ofplants. In Phosphorus: Agriculture and the Environment. Edited by: Sims JT,Sharpley AN. Madison, American Society of Agronomy; 2005:379-414.

3. Lynch JM, Whipps JM: Substrate flow in the rhizosphere. Plant Soil. 1990, 129: 1-10. 10.1007/BF00011685.

4. Marschner H: Mineral Nutrition of Higher Plants. Academic Press Limited;1995.

5. Whipps JM: Carbon Economy. In The Rhizosphere. Edited by: Lynch JM.West Sussex. John Wiley and Sons; 1990:59-98.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3