Author:
English Adam C,Patel Ketan S,Loraine Ann E
Abstract
Abstract
Background
Around 14% of protein-coding genes of Arabidopsis thaliana genes from the TAIR9 genome release are annotated as producing multiple transcript variants through alternative splicing. However, for most alternatively spliced genes in Arabidopsis, the relative expression level of individual splicing variants is unknown.
Results
We investigated prevalence of alternative splicing (AS) events in Arabidopsis thaliana using ESTs. We found that for most AS events with ample EST coverage, the majority of overlapping ESTs strongly supported one major splicing choice, with less than 10% of ESTs supporting the minor form. Analysis of ESTs also revealed a small but noteworthy subset of genes for which alternative choices appeared with about equal prevalence, suggesting that for these genes the variant splicing forms co-occur in the same cell types. Of the AS events in which both forms were about equally prevalent, more than 80% affected untranslated regions or involved small changes to the encoded protein sequence.
Conclusions
Currently available evidence from ESTs indicates that alternative splicing in Arabidopsis occurs and affects many genes, but for most genes with documented alternative splicing, one AS choice predominates. To aid investigation of the role AS may play in modulating function of Arabidopsis genes, we provide an on-line resource (ArabiTag) that supports searching AS events by gene, by EST library keyword search, and by relative prevalence of minor and major forms.
Publisher
Springer Science and Business Media LLC
Reference34 articles.
1. Sharp PA: The discovery of split genes and RNA splicing. Trends Biochem Sci. 2005, 30 (6): 279-281. 10.1016/j.tibs.2005.04.002.
2. Cline MS, Shigeta R, Wheeler RL, Siani-Rose MA, Kulp D, Loraine AE: The effects of alternative splicing on transmembrane proteins in the mouse genome. Pac Symp Biocomput. 2004, 17-28.
3. Loraine AE, Helt GA, Cline MS, Siani-Rose MA: Exploring alternative transcript structure in the human genome using Blocks and InterPro. Journal of Bioinformatics and Computational Biology. 2003, 1 (2): 289-306. 10.1142/S0219720003000113.
4. Eckardt NA: Alternative splicing and the control of flowering time. Plant Cell. 2002, 14 (4): 743-747. 10.1105/tpc.000000.
5. Bell LR, Maine EM, Schedl P, Cline TW: Sex-lethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similarity to RNA binding proteins. Cell. 1988, 55 (6): 1037-1046. 10.1016/0092-8674(88)90248-6.
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献