Evaluation of protein pattern changes in roots and leaves of Zea maysplants in response to nitrate availability by two-dimensional gel electrophoresis analysis

Author:

Prinsi Bhakti,Negri Alfredo S,Pesaresi Paolo,Cocucci Maurizio,Espen Luca

Abstract

Abstract Background Nitrogen nutrition is one of the major factors that limit growth and production of crop plants. It affects many processes, such as development, architecture, flowering, senescence and photosynthesis. Although the improvement in technologies for protein study and the widening of gene sequences have made possible the study of the plant proteomes, only limited information on proteome changes occurring in response to nitrogen amount are available up to now. In this work, two-dimensional gel electrophoresis (2-DE) has been used to investigate the protein changes induced by NO3 - concentration in both roots and leaves of maize (Zea mays L.) plants. Moreover, in order to better evaluate the proteomic results, some biochemical and physiological parameters were measured. Results Through 2-DE analysis, 20 and 18 spots that significantly changed their amount at least two folds in response to nitrate addition to the growth medium of starved maize plants were found in roots and leaves, respectively. Most of these spots were identified by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry (LC-ESI-MS/MS). In roots, many of these changes were referred to enzymes involved in nitrate assimilation and in metabolic pathways implicated in the balance of the energy and redox status of the cell, among which the pentose phosphate pathway. In leaves, most of the characterized proteins were related to regulation of photosynthesis. Moreover, the up-accumulation of lipoxygenase 10 indicated that the leaf response to a high availability of nitrate may also involve a modification in lipid metabolism. Finally, this proteomic approach suggested that the nutritional status of the plant may affect two different post-translational modifications of phosphoenolpyruvate carboxylase (PEPCase) consisting in monoubiquitination and phosphorylation in roots and leaves, respectively. Conclusion This work provides a first characterization of the proteome changes that occur in response to nitrate availability in leaves and roots of maize plants. According to previous studies, the work confirms the relationship between nitrogen and carbon metabolisms and it rises some intriguing questions, concerning the possible role of NO and lipoxygenase 10 in roots and leaves, respectively. Although further studies will be necessary, this proteomic analysis underlines the central role of post-translational events in modulating pivotal enzymes, such as PEPCase.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3