Cupin: A candidate molecular structure for the Nep1-like protein family
-
Published:2008-04-30
Issue:1
Volume:8
Page:
-
ISSN:1471-2229
-
Container-title:BMC Plant Biology
-
language:en
-
Short-container-title:BMC Plant Biol
Author:
Cechin Adelmo L,Sinigaglia Marialva,Lemke Ney,Echeverrigaray Sérgio,Cabrera Odalys G,Pereira Gonçalo AG,Mombach José CM
Abstract
Abstract
Background
NEP1-like proteins (NLPs) are a novel family of microbial elicitors of plant necrosis. Some NLPs induce a hypersensitive-like response in dicot plants though the basis for this response remains unclear. In addition, the spatial structure and the role of these highly conserved proteins are not known.
Results
We predict a 3d-structure for the β-rich section of the NLPs based on alignments, prediction tools and molecular dynamics. We calculated a consensus sequence from 42 NLPs proteins, predicted its secondary structure and obtained a high quality alignment of this structure and conserved residues with the two Cupin superfamily motifs. The conserved sequence GHRHDWE and several common residues, especially some conserved histidines, in NLPs match closely the two cupin motifs. Besides other common residues shared by dicot Auxin-Binding Proteins (ABPs) and NLPs, an additional conserved histidine found in all dicot ABPs was also found in all NLPs at the same position.
Conclusion
We propose that the necrosis inducing protein class belongs to the Cupin superfamily. Based on the 3d-structure, we are proposing some possible functions for the NLPs.
Publisher
Springer Science and Business Media LLC
Reference52 articles.
1. Bailey BA: Purification of a protein from culture filtrates of Fusarium oxysporum that induces ethylene and necrosis in leaves of Erythroxylum coca. Phytopathology. 1995, 85: 1250-1255. 10.1094/Phyto-85-1250. 2. Gijzen M, Nürnberger T: Nep1-like proteins from plants pathogens: Recruitment and diversification of the NPP1 Domain Across Taxa. Phytochemistry. 2006, 16 (67): 1800-1807. 10.1016/j.phytochem.2005.12.008. 3. Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RH, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL, Chapman J, Damasceno CMB, Dorrance AE, Dou D, Dickerman AW, Dubchak IL, Garbelotto M, Gijzen M, Gordon SC, Govers F, Grunwald NJ, Huang W, Ivors KL, Jones RW, Kamoun S, Krampis K, Lamour KH, Lee MK, McDonald WH, Medina M, Meijer HJG, Nordberg EK, Maclean DJ, Ospina-Giraldo MD, Morris PF, Phuntumart V, Putnam NH, Rash S, Rose JKC, Sakihama Y, Salamov AA, Savidor A, Scheuring CF, Smith BM, Sobral BWS, Terry A, Torto-Alalibo TA, Win J, Xu Z, Zhang H, Grigoriev IV, Rokhsar DS, Boore JL: Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science. 2006, 313: 1261-1266. 10.1126/science.1128796. 4. Pemberton CL, Salmond GPC: The Nep1-like proteins – a growing family of microbial elicitors of plant necrosis. Mol Plant Pathol. 2004, 5 (4): 353-359. 10.1111/j.1364-3703.2004.00235.x. 5. Garcia O, Macedo J, Tibúrcio R, Zaparoli G, Rincones J, Bittencourt L, Ceita G, Micheli F, Gesteira A, Mariano A, Schiavinato M, Medrano F, Meinhardt L, Pereira G, Cascardo J: Characterization of necrosis and ethylene-inducing proteins (NEP) in the basidiomycete Moniliophthora perniciosa, the causal agent of witches' broom in Theobroma cacao. Mycol Res. 2007, 111: 443-455. 10.1016/j.mycres.2007.01.017.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|