Analysis of a c0t-1 library enables the targeted identification of minisatellite and satellite families in Beta vulgaris

Author:

Zakrzewski Falk,Wenke Torsten,Holtgräwe Daniela,Weisshaar Bernd,Schmidt Thomas

Abstract

Abstract Background Repetitive DNA is a major fraction of eukaryotic genomes and occurs particularly often in plants. Currently, the sequencing of the sugar beet (Beta vulgaris) genome is under way and knowledge of repetitive DNA sequences is critical for the genome annotation. We generated a c 0 t-1 library, representing highly to moderately repetitive sequences, for the characterization of the major B. vulgaris repeat families. While highly abundant satellites are well-described, minisatellites are only poorly investigated in plants. Therefore, we focused on the identification and characterization of these tandemly repeated sequences. Results Analysis of 1763 c 0 t-1 DNA fragments, providing 442 kb sequence data, shows that the satellites pBV and pEV are the most abundant repeat families in the B. vulgaris genome while other previously described repeats show lower copy numbers. We isolated 517 novel repetitive sequences and used this fraction for the identification of minisatellite and novel satellite families. Bioinformatic analysis and Southern hybridization revealed that minisatellites are moderately to highly amplified in B. vulgaris. FISH showed a dispersed localization along most chromosomes clustering in arrays of variable size and number with exclusion and depletion in distinct regions. Conclusion The c 0 t-1 library represents major repeat families of the B. vulgaris genome, and analysis of the c 0 t-1 DNA was proven to be an efficient method for identification of minisatellites. We established, so far, the broadest analysis of minisatellites in plants and observed their chromosomal localization providing a background for the annotation of the sugar beet genome and for the understanding of the evolution of minisatellites in plant genomes.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3