Dissection of genetic and environmental factors involved in tomato organoleptic quality

Author:

Carli Paola,Barone Amalia,Fogliano Vincenzo,Frusciante Luigi,Ercolano Maria R

Abstract

Abstract Background One of the main tomato breeding objectives is to improve fruit organoleptic quality. However, this task is made somewhat challenging by the complex nature of sensory traits and the lack of efficient selection criteria. Sensory quality depends on numerous factors, including fruit colour, texture, aroma, and composition in primary and secondary metabolites. It is also influenced by genotypic differences, the nutritional regime of plants, stage of ripening at harvest and environmental conditions. In this study, agronomic, biochemical and sensory characterization was performed on six Italian heirlooms grown in different environmental conditions. Result We identified a number of links among traits contributing to fruit organoleptic quality and to the perception of sensory attributes. PCA analysis was used to highlight some biochemical, sensory and agronomic discriminating traits: this statistical test allowed us to identify which sensory attributes are more closely linked to environmental conditions and those, instead, linked to the genetic constitution of tomato. Sweetness, sourness, saltiness and tomato flavour are not only grouped in the same PCA factor, but also result in a clear discrimination of tomato ecotypes in the three different fields. The three different traditional varieties cluster on the basis of attributes like juiciness, granulosity, hardness and equatorial diameter, and are therefore more closely related to the genetic background of the cultivar. Conclusion This finding suggests that a different method should be undertaken to improve sensory traits related to taste perception and texture. Our results might be used to ascertain in what direction to steer breeding in order to improve the flavour characteristics of tomato ecotypes.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3