Author:
Xu Jingyu,Carlsson Anders S,Francis Tammy,Zhang Meng,Hoffman Travis,Giblin Michael E,Taylor David C
Abstract
Abstract
Background
The Arabidopsis thaliana dgat1 mutant, AS11, has an oil content which is decreased by 30%, and a strongly increased ratio of 18:3/20:1, compared to wild type. Despite lacking a functional DGAT1, AS11 still manages to make 70% of WT seed oil levels. Recently, it was demonstrated that in the absence of DGAT1, PDAT1 was essential for normal seed development, and is a dominant determinant in Arabidopsis TAG biosynthesis.
Methods
Biochemical, metabolic and gene expression studies combined with genetic crossing of selected Arabidopsis mutants have been carried out to demonstrate the contribution of Arabidopsis PDAT1 and LPCAT2 in the absence of DGAT1 activity.
Results
Through microarray and RT-PCR gene expression analyses of AS11 vs. WT mid-developing siliques, we observed consistent trends between the two methods. FAD2 and FAD3 were up-regulated and FAE1 down-regulated, consistent with the AS11 acyl phenotype. PDAT1 expression was up-regulated by ca 65% while PDAT2 expression was up-regulated only 15%, reinforcing the dominant role of PDAT1 in AS11 TAG biosynthesis. The expression of LPCAT2 was up-regulated by 50-75%, while LPCAT1 expression was not significantly affected. In vitro LPCAT activity was enhanced by 75-125% in microsomal protein preparations from mid-developing AS11 seed vs WT. Co-incident homozygous knockout lines of dgat1/lpcat2 exhibited severe penalties on TAG biosynthesis, delayed plant development and seed set, even with a functional PDAT1; the double mutant dgat1/lpcat1 showed only marginally lower oil content than AS11.
Conclusions
Collectively, the data strongly support that in AS11 it is LPCAT2 up-regulation which is primarily responsible for assisting in PDAT1-catalyzed TAG biosynthesis, maintaining a supply of PC as co-substrate to transfer sn-2 moieties to the sn-3 position of the enlarged AS11 DAG pool.
Publisher
Springer Science and Business Media LLC
Reference41 articles.
1. Stymne S, Stobart AK: Triacylglycerol biosynthesis. The biochemistry of plants. Lipids: structure and funchtion. Volume 9. Edited by: Stumpf PK. New York: Academic Press; 1987:175-214.
2. Murphy DJ, Vance J: Mechanisms of lipid-body formation. Trends Biochem Sci. 1999, 24: 109-115. 10.1016/S0968-0004(98)01349-8.
3. Wolters-Arts M, Lush WM, Mariani C: Lipids are required for directional pollen-tube growth. Nature. 1998, 392: 818-821. 10.1038/33929.
4. Zheng Z, Xia Q, Dauk M, Shen W, Selvaraj G, Zou J: Arabidopsis AtGPAT1, a member of the membrane-bound glycerol-3-phosphate acyltransferase gene family, is essential for tapetum differentiation and male fertility. Plant Cell. 2003, 15: 1872-1887. 10.1105/tpc.012427.
5. Cases S, Smith SJ, Zheng YW, Myers HM, Lear SR, Sande E, Novak S, Collins C, Welch CB, Lusis AJ, Erickson S, Farese RV: Identification of a gene encoding an acyl CoA: diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Proc Natl Acad Sci USA. 1998, 95: 13018-13023. 10.1073/pnas.95.22.13018.
Cited by
71 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献