Author:
Song Jiancheng,Jiang Lijun,Jameson Paula Elizabeth
Abstract
Abstract
Background
As the global population continues to expand, increasing yield in bread wheat is of critical importance as 20% of the world’s food supply is sourced from this cereal. Several recent studies of the molecular basis of grain yield indicate that the cytokinins are a key factor in determining grain yield. In this study, cytokinin gene family members in bread wheat were isolated from four multigene families which regulate cytokinin synthesis and metabolism, the isopentenyl transferases (IPT), cytokinin oxidases (CKX), zeatin O-glucosyltransferases (ZOG), and β-glucosidases (GLU). As bread wheat is hexaploid, each gene family is also likely to be represented on the A, B and D genomes. By using a novel strategy of qRT-PCR with locus-specific primers shared among the three homoeologues of each family member, detailed expression profiles are provided of family members of these multigene families expressed during leaf, spike and seed development.
Results
The expression patterns of individual members of the IPT, CKX, ZOG, and GLU multigene families in wheat are shown to be tissue- and developmentally-specific. For instance, TaIPT2 and TaCKX1 were the most highly expressed family members during early seed development, with relative expression levels of up to 90- and 900-fold higher, respectively, than those in the lowest expressed samples. The expression of two cis-ZOG genes was sharply increased in older leaves, while an extremely high mRNA level of TaGLU1-1 was detected in young leaves.
Conclusions
Key genes with tissue- and developmentally-specific expression have been identified which would be prime targets for genetic manipulation towards yield improvement in bread wheat breeding programmes, utilising TILLING and MAS strategies.
Publisher
Springer Science and Business Media LLC
Reference75 articles.
1. International Grains Council: Grain Market report. 2010, [www.igc.int/downloads/gmrsummary/gmrsumme.pdf].
2. FAO: FAOSTAT. 2010, [http://faostat.fao.org/site/368/DesktopDefault.aspx?PageID=368#ancor].
3. Reynolds M, Bonnett D, Chapman SC, Furbank RT, Manès Y, Mather DE, Parry MAJ: Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J Exp Bot. 2011, 62: 439-452. 10.1093/jxb/erq311.
4. Smidansky ED, Clancy M, Meyer FD, Lanning SP, Blake NK, Talbert LE, Giroux MJ: Enhanced ADP-glucose pyrophosphorylase activity in wheat endosperm increases seed yield. PNAS. 2002, 99: 1724-1729. 10.1073/pnas.022635299.
5. Van Camp W: Yield enhancement genes: seeds for growth. Curr Opin Biotechnol. 2005, 16: 147-153. 10.1016/j.copbio.2005.03.002.
Cited by
75 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献