Author:
Bourguiba Hedia,Audergon Jean-Marc,Krichen Lamia,Trifi-Farah Neila,Mamouni Ali,Trabelsi Samia,D’Onofrio Claudio,Asma Bayram M,Santoni Sylvain,Khadari Bouchaib
Abstract
Abstract
Background
Domestication generally implies a loss of diversity in crop species relative to their wild ancestors because of genetic drift through bottleneck effects. Compared to native Mediterranean fruit species like olive and grape, the loss of genetic diversity is expected to be more substantial for fruit species introduced into Mediterranean areas such as apricot (Prunus armeniaca L.), which was probably primarily domesticated in China. By comparing genetic diversity among regional apricot gene pools in several Mediterranean areas, we investigated the loss of genetic diversity associated with apricot selection and diffusion into the Mediterranean Basin.
Results
According to the geographic origin of apricots and using Bayesian clustering of genotypes, Mediterranean apricot (207 genotypes) was structured into three main gene pools: ‘Irano-Caucasian’, ‘North Mediterranean Basin’ and ‘South Mediterranean Basin’. Among the 25 microsatellite markers used, only one displayed deviations from the frequencies expected under neutrality. Similar genetic diversity parameters were obtained within each of the three main clusters using both all SSR loci and only 24 SSR loci based on the assumption of neutrality. A significant loss of genetic diversity, as assessed by the allelic richness and private allelic richness, was revealed from the ‘Irano-Caucasian’ gene pool, considered as a secondary centre of diversification, to the northern and southwestern Mediterranean Basin. A substantial proportion of shared alleles was specifically detected when comparing gene pools from the ‘North Mediterranean Basin’ and ‘South Mediterranean Basin’ to the secondary centre of diversification.
Conclusions
A marked domestication bottleneck was detected with microsatellite markers in the Mediterranean apricot material, depicting a global image of two diffusion routes from the ‘Irano-Caucasian’ gene pool: North Mediterranean and Southwest Mediterranean. This study generated genetic insight that will be useful for management of Mediterranean apricot germplasm as well as genetic selection programs related to adaptive traits.
Publisher
Springer Science and Business Media LLC
Reference68 articles.
1. Gepts P: Domestication as a long-term selection experiment. Plant Breed Rev. 2004, 24: 1-44.
2. Harlan JR: Crops and man. American Society of Agronomy and Crop Science Society of America. Second edition. Wisconsin, USA: Madison; 1992.
3. Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, Mc-Mullen MD, Gaut BS: The effects of artificial selection on the maize genome. Science. 2005, 308: 1310-1314. 10.1126/science.1107891.
4. Sweeny MT, Thomson MJ, Cho YG, Park YJ, Williamson SH, Bustamante CD, McCouch SR: Global dissemination of a single mutation conferring white pericarp in rice. PloS Genet. 2007, 3: e133-10.1371/journal.pgen.0030133.
5. Doebley JF, Gaut BS, Smith BD: The molecular genetics of crop domestication. Cell. 2006, 127: 1309-1321. 10.1016/j.cell.2006.12.006.