Author:
Cabezas José A,Ibáñez Javier,Lijavetzky Diego,Vélez Dolores,Bravo Gema,Rodríguez Virginia,Carreño Iván,Jermakow Angelica M,Carreño Juan,Ruiz-García Leonor,Thomas Mark R,Martinez-Zapater José M
Abstract
Abstract
Background
Rapid and consistent genotyping is an important requirement for cultivar identification in many crop species. Among them grapevine cultivars have been the subject of multiple studies given the large number of synonyms and homonyms generated during many centuries of vegetative multiplication and exchange. Simple sequence repeat (SSR) markers have been preferred until now because of their high level of polymorphism, their codominant nature and their high profile repeatability. However, the rapid application of partial or complete genome sequencing approaches is identifying thousands of single nucleotide polymorphisms (SNP) that can be very useful for such purposes. Although SNP markers are bi-allelic, and therefore not as polymorphic as microsatellites, the high number of loci that can be multiplexed and the possibilities of automation as well as their highly repeatable results under any analytical procedure make them the future markers of choice for any type of genetic identification.
Results
We analyzed over 300 SNP in the genome of grapevine using a re-sequencing strategy in a selection of 11 genotypes. Among the identified polymorphisms, we selected 48 SNP spread across all grapevine chromosomes with allele frequencies balanced enough as to provide sufficient information content for genetic identification in grapevine allowing for good genotyping success rate. Marker stability was tested in repeated analyses of a selected group of cultivars obtained worldwide to demonstrate their usefulness in genetic identification.
Conclusions
We have selected a set of 48 stable SNP markers with a high discrimination power and a uniform genome distribution (2-3 markers/chromosome), which is proposed as a standard set for grapevine (Vitis vinifera L.) genotyping. Any previous problems derived from microsatellite allele confusion between labs or the need to run reference cultivars to identify allele sizes disappear using this type of marker. Furthermore, because SNP markers are bi-allelic, allele identification and genotype naming are extremely simple and genotypes obtained with different equipments and by different laboratories are always fully comparable.
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. This P, Lacombe T, Thomas MR: Historical origins and genetic diversity of wine grapes. Trends Genet. 2006, 22 (9): 511-519. 10.1016/j.tig.2006.07.008.
2. Regner F, Hack R, Santiago JL: Highly variable Vitis microsatellite loci for the identification of Pinot Noir clones. Vitis. 2006, 45 (2): 85-91.
3. Thomas MR, Cain P, Scott NS: DNA typing of grapevines: A universal methodology and database for describing cultivars and evaluating genetic relatedness. Plant Mol Biol. 1994, 25: 939-949. 10.1007/BF00014668.
4. Bowers JE, Meredith CP: The parentage of a classic wine grape, Cabernet Sauvignon. Nat Genet. 1997, 16 (1): 84-87. 10.1038/ng0597-84.
5. Thomas MR, Scott NS: Microsatellite repeats in grapevine reveal DNA polymorphisms when analysed as sequence-tagged sites (STSs). Theor Appl Genet. 1993, 86: 985-990.
Cited by
118 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献