SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativumL.)

Author:

Leonforte Antonio,Sudheesh Shimna,Cogan Noel OI,Salisbury Philip A,Nicolas Marc E,Materne Michael,Forster John W,Kaur Sukhjiwan

Abstract

Abstract Background Field pea (Pisum sativum L.) is a self-pollinating, diploid, cool-season food legume. Crop production is constrained by multiple biotic and abiotic stress factors, including salinity, that cause reduced growth and yield. Recent advances in genomics have permitted the development of low-cost high-throughput genotyping systems, allowing the construction of saturated genetic linkage maps for identification of quantitative trait loci (QTLs) associated with traits of interest. Genetic markers in close linkage with the relevant genomic regions may then be implemented in varietal improvement programs. Results In this study, single nucleotide polymorphism (SNP) markers associated with expressed sequence tags (ESTs) were developed and used to generate comprehensive linkage maps for field pea. From a set of 36,188 variant nucleotide positions detected through in silico analysis, 768 were selected for genotyping of a recombinant inbred line (RIL) population. A total of 705 SNPs (91.7%) successfully detected segregating polymorphisms. In addition to SNPs, genomic and EST-derived simple sequence repeats (SSRs) were assigned to the genetic map in order to obtain an evenly distributed genome-wide coverage. Sequences associated with the mapped molecular markers were used for comparative genomic analysis with other legume species. Higher levels of conserved synteny were observed with the genomes of Medicago truncatula Gaertn. and chickpea (Cicer arietinum L.) than with soybean (Glycine max [L.] Merr.), Lotus japonicus L. and pigeon pea (Cajanus cajan [L.] Millsp.). Parents and RIL progeny were screened at the seedling growth stage for responses to salinity stress, imposed by addition of NaCl in the watering solution at a concentration of 18 dS m-1. Salinity-induced symptoms showed normal distribution, and the severity of the symptoms increased over time. QTLs for salinity tolerance were identified on linkage groups Ps III and VII, with flanking SNP markers suitable for selection of resistant cultivars. Comparison of sequences underpinning these SNP markers to the M. truncatula genome defined genomic regions containing candidate genes associated with saline stress tolerance. Conclusion The SNP assays and associated genetic linkage maps developed in this study permitted identification of salinity tolerance QTLs and candidate genes. This constitutes an important set of tools for marker-assisted selection (MAS) programs aimed at performance enhancement of field pea cultivars.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference99 articles.

1. Kocer A, Albayrak S: Determination of forage yield and quality of pea (Pisum sativum L.) mixtures with oat and barley. Turk J Field Crops. 2012, 17: 96-99.

2. Omokanye AT, Kelleher FM, McInnes A: Low-input cropping systems and nitrogen fertilizer effects on crop production: Soil nitrogen dynamics and efficiency of nitrogen use in maize crop. American-Eurasian J Agric Environ Sci. 2011, 11: 282-295.

3. Chamarthi SK, Kumar A, Voung TD, Blair MW, Gaur PM, Nguyen HT, Varshney RK: Trait mapping and molecular breeding. Biology and Breeding of Food Legumes. Edited by: Pratap A, Kumar J. Oxfordshire: CAB International; 2011:296-313.

4. McPhee KE: Pea. Genome Mapping and Molecular Breeding in Plants: Pulses, Sugar and Tuber Crops. Volume 3. Edited by: Kole C. Berlin: Springer; 2007:33-47.

5. Redden B, Leonforte T, Ford R, Croser J, Slattery J: Pea (Pisum sativum L.). Genetic Resources, Chromosome Engineering, and Crop Improvement. Edited by: Singh RJ. Florida, USA: CRC Press; 2005:49-83.

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3