Identification and evaluation of new reference genes in Gossypium hirsutumfor accurate normalization of real-time quantitative RT-PCR data

Author:

Artico Sinara,Nardeli Sarah M,Brilhante Osmundo,Grossi-de-Sa Maria Fátima,Alves-Ferreira Marcio

Abstract

AbstractBackgroundNormalizing through reference genes, or housekeeping genes, can make more accurate and reliable results from reverse transcription real-time quantitative polymerase chain reaction (qPCR). Recent studies have shown that no single housekeeping gene is universal for all experiments. Thus, suitable reference genes should be the first step of any qPCR analysis. Only a few studies on the identification of housekeeping gene have been carried on plants. Therefore qPCR studies on important crops such as cotton has been hampered by the lack of suitable reference genes.ResultsBy the use of two distinct algorithms, implemented bygeNormandNormFinder, we have assessed the gene expression of nine candidate reference genes in cotton:GhACT4, GhEF1α5, GhFBX6, GhPP2A1, GhMZA, GhPTB, GhGAPC2, GhβTUB3andGhUBQ14. The candidate reference genes were evaluated in 23 experimental samples consisting of six distinct plant organs, eight stages of flower development, four stages of fruit development and in flower verticils. The expression ofGhPP2A1andGhUBQ14genes were the most stable across all samples and also when distinct plants organs are examined.GhACT4andGhUBQ14present more stable expression during flower development,GhACT4andGhFBX6in the floral verticils andGhMZAandGhPTBduring fruit development. Our analysis provided the most suitable combination of reference genes for each experimental set tested as internal control for reliable qPCR data normalization. In addition, to illustrate the use of cotton reference genes we checked the expression of two cotton MADS-box genes in distinct plant and floral organs and also during flower development.ConclusionWe have tested the expression stabilities of nine candidate genes in a set of 23 tissue samples from cotton plants divided into five different experimental sets. As a result of this evaluation, we recommend the use ofGhUBQ14andGhPP2A1housekeeping genes as superior references for normalization of gene expression measures in different cotton plant organs;GhACT4andGhUBQ14for flower development,GhACT4andGhFBX6for the floral organs andGhMZAandGhPTBfor fruit development. We also provide the primer sequences whose performance in qPCR experiments is demonstrated. These genes will enable more accurate and reliable normalization of qPCR results for gene expression studies in this important crop, the major source of natural fiber and also an important source of edible oil. The use of bona fide reference genes allowed a detailed and accurate characterization of the temporal and spatial expression pattern of two MADS-box genes in cotton.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3