The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+loading in xylem and confers salt tolerance in transgenic tobacco

Author:

Yadav Narendra Singh,Shukla Pushp Sheel,Jha Anupama,Agarwal Pradeep K,Jha Bhavanath

Abstract

Abstract Background Soil salinity adversely affects plant growth and development and disturbs intracellular ion homeostasis resulting cellular toxicity. The Salt Overly Sensitive 1 (SOS1) gene encodes a plasma membrane Na+/H+ antiporter that plays an important role in imparting salt stress tolerance to plants. Here, we report the cloning and characterisation of the SbSOS1 gene from Salicornia brachiata, an extreme halophyte. Results The SbSOS1 gene is 3774 bp long and encodes a protein of 1159 amino acids. SbSOS1 exhibited a greater level of constitutive expression in roots than in shoots and was further increased by salt stress. Overexpressing the S. brachiata SbSOS1 gene in tobacco conferred high salt tolerance, promoted seed germination and increased root length, shoot length, leaf area, fresh weight, dry weight, relative water content (RWC), chlorophyll, K+/Na+ ratio, membrane stability index, soluble sugar, proline and amino acid content relative to wild type (WT) plants. Transgenic plants exhibited reductions in electrolyte leakage, reactive oxygen species (ROS) and MDA content in response to salt stress, which probably occurred because of reduced cytosolic Na+ content and oxidative damage. At higher salt stress, transgenic tobacco plants exhibited reduced Na+ content in root and leaf and higher concentrations in stem and xylem sap relative to WT, which suggests a role of SbSOS1 in Na+ loading to xylem from root and leaf tissues. Transgenic lines also showed increased K+ and Ca2+ content in root tissue compared to WT, which reflect that SbSOS1 indirectly affects the other transporters activity. Conclusions Overexpression of SbSOS1 in tobacco conferred a high degree of salt tolerance, enhanced plant growth and altered physiological and biochemical parameters in response to salt stress. In addition to Na+ efflux outside the plasma membrane, SbSOS1 also helps to maintain variable Na+ content in different organs and also affect the other transporters activity indirectly. These results broaden the role of SbSOS1 in planta and suggest that this gene could be used to develop salt-tolerant transgenic crops.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference65 articles.

1. Epstein E, Bloom AJ: Mineral nutrition of plants: principles and perspectives. 2005, Sunderland, Massachusetts: Sinauer Associations, 342-351. 2

2. FAO: FAO land and plant nutrition management service. 2008, http://www.fao.org/ag/agl/agll/spush/.

3. Hasegava M, Bressan R, Pardo JM: The dawn of plant salt tolerance genetics. Trends Plant Sci. 2000, 5: 317-319. 10.1016/S1360-1385(00)01692-7.

4. Wyn Jones RG, Pollard A: Encyclopedia of plant physiology. 1983, Berlin: Springer-Verlag.

5. Hernández JA, Olmos E, Corpas FJ, Sevilla F, Del Río LA: Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci. 1995, 105: 151-167. 10.1016/0168-9452(94)04047-8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3