The Arabidopsis translocator protein (AtTSPO) is regulated at multiple levels in response to salt stress and perturbations in tetrapyrrole metabolism

Author:

Balsemão-Pires Emilia,Jaillais Yvon,Olson Bradley JSC,Andrade Leonardo R,Umen James G,Chory Joanne,Sachetto-Martins Gilberto

Abstract

Abstract Background The translocator protein 18 kDa (TSPO), previously known as the peripheral-type benzodiazepine receptor (PBR), is important for many cellular functions in mammals and bacteria, such as steroid biosynthesis, cellular respiration, cell proliferation, apoptosis, immunomodulation, transport of porphyrins and anions. Arabidopsis thaliana contains a single TSPO/PBR-related gene with a 40 amino acid N-terminal extension compared to its homologs in bacteria or mammals suggesting it might be chloroplast or mitochondrial localized. Results To test if the TSPO N-terminal extension targets it to organelles, we fused three potential translational start sites in the TSPO cDNA to the N-terminus of GFP (AtTSPO:eGFP). The location of the AtTSPO:eGFP fusion protein was found to depend on the translational start position and the conditions under which plants were grown. Full-length AtTSPO:eGFP fusion protein was found in the endoplasmic reticulum and in vesicles of unknown identity when plants were grown in standard conditions. However, full length AtTSPO:eGFP localized to chloroplasts when grown in the presence of 150 mM NaCl, conditions of salt stress. In contrast, when AtTSPO:eGFP was truncated to the second or third start codon at amino acid position 21 or 42, the fusion protein co-localized with a mitochondrial marker in standard conditions. Using promoter GUS fusions, qRT-PCR, fluorescent protein tagging, and chloroplast fractionation approaches, we demonstrate that AtTSPO levels are regulated at the transcriptional, post-transcriptional and post-translational levels in response to abiotic stress conditions. Salt-responsive genes are increased in a tspo-1 knock-down mutant compared to wild type under conditions of salt stress, while they are decreased when AtTSPO is overexpressed. Mutations in tetrapyrrole biosynthesis genes and the application of chlorophyll or carotenoid biosynthesis inhibitors also affect AtTSPO expression. Conclusion Our data suggest that AtTSPO plays a role in the response of Arabidopsis to high salt stress. Salt stress leads to re-localization of the AtTSPO from the ER to chloroplasts through its N-terminal extension. In addition, our results show that AtTSPO is regulated at the transcriptional level in tetrapyrrole biosynthetic mutants. Thus, we propose that AtTSPO may play a role in transporting tetrapyrrole intermediates during salt stress and other conditions in which tetrapyrrole metabolism is compromised.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3