Natural diversity of potato (Solanum tuberosum) invertases

Author:

Draffehn Astrid M,Meller Sebastian,Li Li,Gebhardt Christiane

Abstract

Abstract Background Invertases are ubiquitous enzymes that irreversibly cleave sucrose into fructose and glucose. Plant invertases play important roles in carbohydrate metabolism, plant development, and biotic and abiotic stress responses. In potato (Solanum tuberosum), invertases are involved in 'cold-induced sweetening' of tubers, an adaptive response to cold stress, which negatively affects the quality of potato chips and French fries. Linkage and association studies have identified quantitative trait loci (QTL) for tuber sugar content and chip quality that colocalize with three independent potato invertase loci, which together encode five invertase genes. The role of natural allelic variation of these genes in controlling the variation of tuber sugar content in different genotypes is unknown. Results For functional studies on natural variants of five potato invertase genes we cloned and sequenced 193 full-length cDNAs from six heterozygous individuals (three tetraploid and three diploid). Eleven, thirteen, ten, twelve and nine different cDNA alleles were obtained for the genes Pain-1, InvGE, InvGF, InvCD141 and InvCD111, respectively. Allelic cDNA sequences differed from each other by 4 to 9%, and most were genotype specific. Additional variation was identified by single nucleotide polymorphism (SNP) analysis in an association-mapping population of 219 tetraploid individuals. Haplotype modeling revealed two to three major haplotypes besides a larger number of minor frequency haplotypes. cDNA alleles associated with chip quality, tuber starch content and starch yield were identified. Conclusions Very high natural allelic variation was uncovered in a set of five potato invertase genes. This variability is a consequence of the cultivated potato's reproductive biology. Some of the structural variation found might underlie functional variation that influences important agronomic traits such as tuber sugar content. The associations found between specific invertase alleles and chip quality, tuber starch content and starch yield will facilitate the selection of superior potato genotypes in breeding programs.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

Reference52 articles.

1. Roitsch T, González M-C: Function and regulation of plant invertases: sweet sensations. Trends in Plant Science. 2004, 9 (12): 606-613. 10.1016/j.tplants.2004.10.009.

2. Tymowska-Lalanne Z, Kreis M, Callow JA: The Plant Invertases: Physiology, Biochemistry and Molecular Biology. Advances in Botanical Research volume 28. Academic Press: 1998. 71-117. full_text.

3. Isherwood FA: Starch-sugar interconversion in Solanum tuberosum. Phytochemistry. 1973, 12: 2579-2591. 10.1016/0031-9422(73)85060-5.

4. Sowokinos J: Biochemical and molecular control of cold-induced sweetening in potatoes. American Journal of Potato Research. 2001, 78 (3): 221-236. 10.1007/BF02883548.

5. Müller-Thurgau H: Über Zuckeranhäufung in Pflanzentheilen in Folge niederer Temperatur. Landwirtsch Jahrb 11. 1882, 751-828.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3