Author:
Gomez S Karen,Javot Hélène,Deewatthanawong Prasit,Torres-Jerez Ivone,Tang Yuhong,Blancaflor Elison B,Udvardi Michael K,Harrison Maria J
Abstract
Abstract
Background
Most vascular flowering plants have the capacity to form symbiotic associations with arbuscular mycorrhizal (AM) fungi. The symbiosis develops in the roots where AM fungi colonize the root cortex and form arbuscules within the cortical cells. Arbuscules are enveloped in a novel plant membrane and their establishment requires the coordinated cellular activities of both symbiotic partners. The arbuscule-cortical cell interface is the primary functional interface of the symbiosis and is of central importance in nutrient exchange. To determine the molecular events the underlie arbuscule development and function, it is first necessary to identify genes that may play a role in this process. Toward this goal we used the Affymetrix GeneChip® Medicago Genome Array to document the M. truncatula transcript profiles associated with AM symbiosis, and then developed laser microdissection (LM) of M. truncatula root cortical cells to enable analyses of gene expression in individual cell types by RT-PCR.
Results
This approach led to the identification of novel M. truncatula and G. intraradices genes expressed in colonized cortical cells and in arbuscules. Within the arbuscule, expression of genes associated with the urea cycle, amino acid biosynthesis and cellular autophagy was detected. Analysis of gene expression in the colonized cortical cell revealed up-regulation of a lysine motif (LysM)-receptor like kinase, members of the GRAS transcription factor family and a symbiosis-specific ammonium transporter that is a likely candidate for mediating ammonium transport in the AM symbiosis.
Conclusion
Transcript profiling using the Affymetrix GeneChip® Medicago Genome Array provided new insights into gene expression in M. truncatula roots during AM symbiosis and revealed the existence of several G. intraradices genes on the M. truncatula GeneChip®. A laser microdissection protocol that incorporates low-melting temperature Steedman's wax, was developed to enable laser microdissection of M. truncatula root cortical cells. LM coupled with RT-PCR provided spatial gene expression information for both symbionts and expanded current information available for gene expression in cortical cells containing arbuscules.
Publisher
Springer Science and Business Media LLC
Reference102 articles.
1. Schüßler A, Schwarzott D, Walker C: A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycological Research. 2001, 105: 1414-1421.
2. Gehrig A, Schüßler A, Kluge M: Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (Cyanobacteria) is an ancestral member of the Glomales: Evidence by SSU rRNA analysis. J Mol Evol. 1996, 43: 71-81. 10.1007/BF02352301.
3. Berbee ML, Taylor JW: The Mycota, Fungal Molecular Evolution: Gene Trees and Geologic Time. Edited by: Mclaughlin JW, Mclaughlin EG, Lemke PA. NY: Springer-Verlag; 2000:229-246.
4. Smith SE, Read DJ, (eds): Mycorrhizal Symbiosis. San Diego, CA: Academic Press, Inc; 1997.
5. Heijden van der MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR: Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature. 1998, 396: 69-72. 10.1038/23932.
Cited by
265 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献