Author:
Gordo Sheila MC,Pinheiro Daniel G,Moreira Edith CO,Rodrigues Simone M,Poltronieri Marli C,de Lemos Oriel F,da Silva Israel Tojal,Ramos Rommel TJ,Silva Artur,Schneider Horacio,Silva Wilson A,Sampaio Iracilda,Darnet Sylvain
Abstract
Abstract
Background
Black pepper (Piper nigrum L.) is one of the most popular spices in the world. It is used in cooking and the preservation of food and even has medicinal properties. Losses in production from disease are a major limitation in the culture of this crop. The major diseases are root rot and foot rot, which are results of root infection by Fusarium solani and Phytophtora capsici, respectively. Understanding the molecular interaction between the pathogens and the host’s root region is important for obtaining resistant cultivars by biotechnological breeding. Genetic and molecular data for this species, though, are limited. In this paper, RNA-Seq technology has been employed, for the first time, to describe the root transcriptome of black pepper.
Results
The root transcriptome of black pepper was sequenced by the NGS SOLiD platform and assembled using the multiple-k method. Blast2Go and orthoMCL methods were used to annotate 10338 unigenes. The 4472 predicted proteins showed about 52% homology with the Arabidopsis proteome. Two root proteomes identified 615 proteins, which seem to define the plant’s root pattern. Simple-sequence repeats were identified that may be useful in studies of genetic diversity and may have applications in biotechnology and ecology.
Conclusions
This dataset of 10338 unigenes is crucially important for the biotechnological breeding of black pepper and the ecogenomics of the Magnoliids, a major group of basal angiosperms.
Publisher
Springer Science and Business Media LLC
Reference44 articles.
1. Nair KPP: Agronomy and Economy of Black Pepper and Cardamom The “King” and “Queen” of Spices. Elsevier, New York 2011.
2. Nishimura Y, Kitagishi Y, Yoshida H, Okumura N, Matsuda S: Ethanol extracts of black pepper or turmeric down-regulated SIRT1 protein expression in Daudi culture cells. Mol Med Report. 2011, 4: 727-730.
3. Liu Y, Yadev VR, Aggarwal BB, Nair MG: Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid peroxidation and nuclear transcription factor-kappa-B. Nat Prod Commun. 2010, 5: 1253-1257.
4. Food and Agriculture Organization of the United Nations: Statistics of Agricultural Production. FAO, Rome 2011.
5. Plant Breeding Reviews;JS Dias,2011
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献