Author:
Afzal Ahmed J,Srour Ali,Goil Abhishek,Vasudaven Sheeja,Liu Tianyun,Samudrala Ram,Dogra Navneet,Kohli Punit,Malakar Ayan,Lightfoot David A
Abstract
Abstract
Background
The protein encoded by GmRLK18-1 (Glyma_18_02680 on chromosome 18) was a receptor like kinase (RLK) encoded within the soybean (Glycine max L. Merr.) Rhg1/Rfs2 locus. The locus underlies resistance to the soybean cyst nematode (SCN) Heterodera glycines (I.) and causal agent of sudden death syndrome (SDS) Fusarium virguliforme (Aoki). Previously the leucine rich repeat (LRR) domain was expressed in Escherichia coli.
Results
The aims here were to evaluate the LRRs ability to; homo-dimerize; bind larger proteins; and bind to small peptides. Western analysis suggested homo-dimers could form after protein extraction from roots. The purified LRR domain, from residue 131–485, was seen to form a mixture of monomers and homo-dimers in vitro. Cross-linking experiments in vitro showed the H274N region was close (<11.1 A) to the highly conserved cysteine residue C196 on the second homo-dimer subunit. Binding constants of 20–142 nM for peptides found in plant and nematode secretions were found. Effects on plant phenotypes including wilting, stem bending and resistance to infection by SCN were observed when roots were treated with 50 pM of the peptides. Far-Western analyses followed by MS showed methionine synthase and cyclophilin bound strongly to the LRR domain. A second LRR from GmRLK08-1 (Glyma_08_g11350) did not show these strong interactions.
Conclusions
The LRR domain of the GmRLK18-1 protein formed both a monomer and a homo-dimer. The LRR domain bound avidly to 4 different CLE peptides, a cyclophilin and a methionine synthase. The CLE peptides GmTGIF, GmCLE34, GmCLE3 and HgCLE were previously reported to be involved in root growth inhibition but here GmTGIF and HgCLE were shown to alter stem morphology and resistance to SCN. One of several models from homology and ab-initio modeling was partially validated by cross-linking. The effect of the 3 amino acid replacements present among RLK allotypes, A87V, Q115K and H274N were predicted to alter domain stability and function. Therefore, the LRR domain of GmRLK18-1 might underlie both root development and disease resistance in soybean and provide an avenue to develop new variants and ligands that might promote reduced losses to SCN.
Publisher
Springer Science and Business Media LLC
Reference55 articles.
1. Jones JDG, Dangl JL: The plant immune system. Nature. 2006, 444: 323-329.
2. Afzal AJ, Wood AJ, Lightfoot DA: Plant receptor-like serine threonine kinases: Roles in signaling plant defense. Molec Plant Microb Interact. 2008, 21: 507-517.
3. Wrather JA, Koenning SR, Anderson TR: Effect of diseases on soybean yields in the United States and Ontario (1999 to 2002). Plant Health Progr. 2003, 10.1094/PHP-2003-0325-01-RV.
4. Palmateer AJ, Schmidt ME, Stetina SR, Russin JS: Temperature effects on race determination in Heterodera glycines. J Nematol. 2000, 32: 349-355.
5. Ruben E, Aziz J, Afzal J, Njiti VN, Triwitayakorn K, Iqbal MJ, Yaegashi S, Arelli PR, Town CD, Ishihara H, Meksem K, Lightfoot DA: Genomic analysis of the ‘Peking’ rhg1 locus: Candidate genes that underlie soybean resistance to the cyst nematode. Mol Genet Genome. 2006, 276: 320-330.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献