Author:
Low Eng-Ti L,Alias Halimah,Boon Soo-Heong,Shariff Elyana M,Tan Chi-Yee A,Ooi Leslie CL,Cheah Suan-Choo,Raha Abdul-Rahim,Wan Kiew-Lian,Singh Rajinder
Abstract
Abstract
Background
Oil palm (Elaeis guineensis Jacq.) is one of the most important oil bearing crops in the world. However, genetic improvement of oil palm through conventional breeding is extremely slow and costly, as the breeding cycle can take up to 10 years. This has brought about interest in vegetative propagation of oil palm. Since the introduction of oil palm tissue culture in the 1970s, clonal propagation has proven to be useful, not only in producing uniform planting materials, but also in the development of the genetic engineering programme. Despite considerable progress in improving the tissue culture techniques, the callusing and embryogenesis rates from proliferating callus cultures remain very low. Thus, understanding the gene diversity and expression profiles in oil palm tissue culture is critical in increasing the efficiency of these processes.
Results
A total of 12 standard cDNA libraries, representing three main developmental stages in oil palm tissue culture, were generated in this study. Random sequencing of clones from these cDNA libraries generated 17,599 expressed sequence tags (ESTs). The ESTs were analysed, annotated and assembled to generate 9,584 putative unigenes distributed in 3,268 consensi and 6,316 singletons. These unigenes were assigned putative functions based on similarity and gene ontology annotations. Cluster analysis, which surveyed the relatedness of each library based on the abundance of ESTs in each consensus, revealed that lipid transfer proteins were highly expressed in embryogenic tissues. A glutathione S-transferase was found to be highly expressed in non-embryogenic callus. Further analysis of the unigenes identified 648 non-redundant simple sequence repeats and 211 putative full-length open reading frames.
Conclusion
This study has provided an overview of genes expressed during oil palm tissue culture. Candidate genes with expression that are modulated during tissue culture were identified. However, in order to confirm whether these genes are suitable as early markers for embryogenesis, the genes need to be tested on earlier stages of tissue culture and a wider range of genotypes. This collection of ESTs is an important resource for genetic and genome analyses of the oil palm, particularly during tissue culture development.
Publisher
Springer Science and Business Media LLC
Reference77 articles.
1. Wong G, Tan CC, Soh AC: Large scale propagation of oil palm clones – experiences to date. Acta Hort (ISHS). 1997, 447: 649-658.
2. Gorret N, Rosli SK, Oppenheimb SF, Willis LB, Lessard PA, Rha CK, Sinskey AJ: Bioreactor culture of oil palm (Elaeis guineensis) and effects of nitrogen source, inoculum size, and conditioned medium on biomass production. J Biotechnol. 2004, 108: 253-263. 10.1016/j.jbiotec.2003.12.009.
3. Staritsky G: Tissue culture of oil palm (Elaies guineensis) as a tool for its vegetative propagation. Ephytica. 1970, 19: 288-292. 10.1007/BF01904205.
4. Raberchault H, Ahee J, Guenin G: Colonies cellulaires et formes èmbryos in vitro a patir de cultures d'embryons de palmier a huile (Elaeis guineensis Jacq.) al'aide de cultures de tissue foliares. Comptes Rendus de l'Académie des Sciences Paris Série. 1970, D283: 1735-1737.
5. Cochard B, Durand-Gasselin T, Amblard P, Konan EK, Gogor S: Performance of adult oil palm clones. Emerging Technologies and Opportunities in the next Millennium. Agriculture Conference: Proceedings of 1999 PORIM International Palm Oil Congress: 1–6 February 1999; Kuala Lumpur. Edited by: Ariffin D, Chan KW. Sharifah SSA: PORIM; 2000:53-64.
Cited by
87 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献