Author:
Bjorbækmo Marit Frederikke Markussen,Carlsen Tor,Brysting Anne,Vrålstad Trude,Høiland Klaus,Ugland Karl Inne,Geml Jozsef,Schumacher Trond,Kauserud Håvard
Abstract
Abstract
Background
Dryas octopetala is a widespread dwarf shrub in alpine and arctic regions that forms ectomycorrhizal (ECM) symbiotic relationships with fungi. In this study we investigated the fungal communities associated with roots of D. octopetala in alpine sites in Norway and in the High Arctic on Svalbard, where we aimed to reveal whether the fungal diversity and species composition varied across the Alpine and Arctic regions. The internal transcribed spacer (ITS) region of nuclear ribosomal DNA was used to identify the fungal communities from bulk root samples obtained from 24 plants.
Results
A total of 137 operational taxonomic units (OTUs) were detected (using 97% similarity cut off during sequence clustering) and well-known ECM genera such as Cenococcum, Cortinarius, Hebeloma, Inocybe and Tomentella occurred frequently. There was no decrease in fungal diversity with increasing latitude. The overall spatial heterogeneity was high, but a weak geographical structuring of the composition of OTUs in the root systems was observed. Calculated species accumulation curves did not level off.
Conclusions
This study indicates that the diversity of fungi associated with D. octopetala does not decrease in high latitude arctic regions, which contrasts observations made in a wide spectrum of other organism groups. A high degree of patchiness was observed across root systems, but the fungal communities were nevertheless weakly spatially structured. Non-asymptotical species accumulation curves and the occurrence of a high number of singletons indicated that only a small fraction of the fungal diversity was detected.
Publisher
Springer Science and Business Media LLC
Reference90 articles.
1. Chapin FS, Körner CH: Patterns, causes, changes, and consequences of biodiversity in arctic and alpine ecosystems. Arctic and alpine biodiversity. Edited by: Chapin FS and CH Körner. Springer-Verlag Berlin Heidelberg; 1995:313-320.
2. Smith SE, Read DJ: Mycorrhizal symbiosis. UK, London: Academic Press, Third 2008.
3. Hobbie JE, Hobbie EA: N-15 in symbiotic fungi and plants estimates nitrogen and carbon flux rates in Arctic tundra. Ecology. 2006, 87 (4): 816-822. 10.1890/0012-9658(2006)87[816:NISFAP]2.0.CO;2.
4. Gardes M, Dahlberg A: Mycorrhizal diversity in arctic and alpine tundra: An open question. New Phytologist. 1996, 133 (1): 147-157. 10.1111/j.1469-8137.1996.tb04350.x.
5. Bruns TD: Thoughts on the processes that maintain local species-diversity of ectomycorrhizal fungi. Plant and Soil. 1995, 170 (1): 63-73. 10.1007/BF02183055.
Cited by
118 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献