Author:
Soliman Sameh SM,Trobacher Christopher P,Tsao Rong,Greenwood John S,Raizada Manish N
Abstract
Abstract
Background
Taxol is an anti-cancer drug harvested from Taxus trees, proposed ecologically to act as a fungicide. Taxus is host to fungal endophytes, defined as organisms that inhabit plants without causing disease. The Taxus endophytes have been shown to synthesize Taxol in vitro, providing Taxus with a second potential biosynthetic route for this protective metabolite. Taxol levels in plants vary 125-fold between individual trees, but the underlying reason has remained unknown.
Results
Comparing Taxus trees or branches within a tree, correlations were observed between Taxol content, and quantity of its resident Taxol-producing endophyte, Paraconiothyrium SSM001. Depletion of fungal endophyte in planta by fungicide reduced plant Taxol accumulation. Fungicide treatment of intact plants caused concomitant decreases in transcript and/or protein levels corresponding to two critical genes required for plant Taxol biosynthesis. Taxol showed fungicidal activity against fungal pathogens of conifer wood, the natural habitat of the Taxol-producing endophyte. Consistent with other Taxol-producing endophytes, SSM001 was resistant to Taxol.
Conclusions
These results suggest that the variation in Taxol content between intact Taxus plants and/or tissues is at least in part caused by varying degrees of transcriptional elicitation of plant Taxol biosynthetic genes by its Taxol-producing endophyte. As Taxol is a fungicide, and the endophyte is resistant to Taxol, we discuss how this endophyte strategy may be to prevent colonization by its fungal competitors but at minimal metabolic cost to itself.
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Strobel SA, Strobel GA: Plant endophytes as a platform for discovery-based undergraduate science education. Nat Chem Biol. 2007, 3 (7): 356-359.
2. Johnston-Monje D, Raizada MN: Plant and endophyte relationships: Nutrient management. Comprehensive Biotechnology. Edited by: Moo-Young M. Oxford: Elsevier: 2nd edn 2011.
3. Johnston-Monje D, Raizada MN: Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One. 2011, 6 (6): 1-22.
4. Brosi G, McCulley R, Bush L, Nelson J, Classen A, Norby R: Effects of multiple climate change factors on the tall fescue-fungal endophyte symbiosis: infection frequency and tissue chemistry. New Phytol. 2011, 189 (3): 797-805.
5. Han J, Li Z, Liu B, Wang H, Li G, Ye H: Metabolic engineering of terpenoids in plants. Chinese J Biotechnol. 2007, 23 (4): 561-569.
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献