Author:
Naoumkina Marina,Torres-Jerez Ivone,Allen Stacy,He Ji,Zhao Patrick X,Dixon Richard A,May Gregory D
Abstract
Abstract
Background
Guar, Cyamopsis tetragonoloba (L.) Taub, is a member of the Leguminosae (Fabaceae) family and is economically the most important of the four species in the genus. The endosperm of guar seed is a rich source of mucilage or gum, which forms a viscous gel in cold water, and is used as an emulsifier, thickener and stabilizer in a wide range of foods and industrial applications. Guar gum is a galactomannan, consisting of a linear (1→4)-β-linked D-mannan backbone with single-unit, (1→6)-linked, α-D-galactopyranosyl side chains. To better understand regulation of guar seed development and galactomannan metabolism we created cDNA libraries and a resulting EST dataset from different developmental stages of guar seeds.
Results
A database of 16,476 guar seed ESTs was constructed, with 8,163 and 8,313 ESTs derived from cDNA libraries I and II, respectively. Library I was constructed from seeds at an early developmental stage (15–25 days after flowering, DAF), and library II from seeds at 30–40 DAF. Quite different sets of genes were represented in these two libraries. Approximately 27% of the clones were not similar to known sequences, suggesting that these ESTs represent novel genes or may represent non-coding RNA. The high flux of energy into carbohydrate and storage protein synthesis in guar seeds was reflected by a high representation of genes annotated as involved in signal transduction, carbohydrate metabolism, chaperone and proteolytic processes, and translation and ribosome structure. Guar unigenes involved in galactomannan metabolism were identified. Among the seed storage proteins, the most abundant contig represented a conglutin accounting for 3.7% of the total ESTs from both libraries.
Conclusion
The present EST collection and its annotation provide a resource for understanding guar seed biology and galactomannan metabolism.
Publisher
Springer Science and Business Media LLC
Reference50 articles.
1. Whistler R, Hymowitz T: Guar: Agronomy, Production, Industrial Use, and Nutrition. Purdue University Press, West Lafayette, IN, 1979:1-118.
2. Anderson E: Endosperm mucilages of legumes. Ind Eng Chem. 1949, 41: 2887-2890. 10.1021/ie50480a056.
3. Heyne E, Whistler RL: Chemical composition and properties of guar polysaccharides. J Am Chem Soc. 1948, 70: 2249-2252. 10.1021/ja01186a075.
4. Edwards ME, Bulpin PW, Dea IC, Reid JS: Biosynthesis of legume-seed galactomannans in vitro. Planta. 1989, 178: 41-51. 10.1007/BF00392525.
5. Edwards ME, Scott C, Gidley MJ, Reid JS: Control of mannose/galactose ratio during galactomannan formation in developing legume seeds. Planta. 1992, 187: 67-74. 10.1007/BF00201625.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献