Identification of SARS-CoV-2 biomarkers in saliva by transcriptomic and proteomics analysis

Author:

Marin Lina M.,Katselis George S.,Chumala Paulos,Sanche Stephen,Julseth Lucas,Penz Erika,Skomro Robert,Siqueira Walter L.

Abstract

AbstractThe detection of SARS-CoV-2 biomarkers by real time PCR (rRT-PCR) has shown that the sensitivity of the test is negatively affected by low viral loads and the severity of the disease. This limitation can be overcome by the use of more sensitive approaches such as mass spectrometry (MS), which has not been explored for the detection of SARS-CoV-2 proteins in saliva. Thus, this study aimed at assessing the translational applicability of mass spectrometry-based proteomics approaches to identify viral proteins in saliva from people diagnosed with COVID-19 within fourteen days after the initial diagnosis, and to compare its performance with rRT-PCR. After ethics approval, saliva samples were self-collected by 42 COVID-19 positive and 16 healthy individuals. Samples from people positive for COVID-19 were collected on average on the sixth day (± 4 days) after initial diagnosis. Viable viral particles in saliva were heat-inactivated followed by the extraction of total proteins and viral RNA. Proteins were digested and then subjected to tandem MS analysis (LC-QTOF-MS/MS) using a data-dependent MS/MS acquisition qualitative shotgun proteomics approach. The acquired spectra were queried against a combined SARS-CoV-2 and human database. The qualitative detection of SARS-CoV-2 specific RNA was done by rRT-PCR. SARS-CoV-2 proteins were identified in all COVID-19 samples (100%), while viral RNA was detected in only 24 out of 42 COVID-19 samples (57.1%). Seven out of 18 SARS-CoV-2 proteins were identified in saliva from COVID-19 positive individuals, from which the most frequent were replicase polyproteins 1ab (100%) and 1a (91.3%), and nucleocapsid (45.2%). Neither viral proteins nor RNA were detected in healthy individuals. Our mass spectrometry approach appears to be more sensitive than rRT-PCR for the detection of SARS-CoV-2 biomarkers in saliva collected from COVID-19 positive individuals up to 14 days after the initial diagnostic test. Based on the novel data presented here, our MS technology can be used as an effective diagnostic test of COVID-19 for initial diagnosis or follow-up of symptomatic cases, especially in patients with reduced viral load.

Funder

University of Saskatchewan

Canadian Institutes of Health Research

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Clinical Biochemistry,Molecular Biology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3