Change of histone H3 lysine 14 acetylation stoichiometry in human monocyte derived macrophages as determined by MS-based absolute targeted quantitative proteomic approach: HIV infection and methamphetamine exposure

Author:

Macur Katarzyna,Schissel Andrew,Yu Fang,Lei Shulei,Morsey Brenda,Fox Howard S.,Ciborowski Pawel

Abstract

Abstract Background Histones posttranslational modification represent an epigenetic mechanism that regulate gene expression and other cellular processes. Quantitative mass spectrometry used for the absolute quantification of such modifications provides further insight into cellular responses to extracellular insults such as infections or toxins. Methamphetamine (Meth), a drug of abuse, is affecting the overall function of the immune system. In this report, we developed, validated and applied a targeted, MS-based quantification assay to measure changes in histone H3 lysine 14 acetylation (H3K14Ac) during exposure of human primary macrophages to HIV-1 infection and/or Meth. Methods The quantification assay was developed and validated to determine H3K14Ac stoichiometry in histones that were isolated from the nuclei of control (CIC) and exposed to Meth before (CIM) or/and after (MIM) HIV-infection human monocyte-derived macrophages (hMDM) of six donors. It was based on LC–MS/MS measurement using multiple reaction monitoring (MRM) acquisition of the unmodified and acetylated form of lysine K14 of histone H3 9KSTGGKAPR17 peptides and the corresponding stable isotope labeled (SIL) heavy peptide standards of the same sequences. The histone samples were propionylated (Poy) pre- and post- trypsin digestion so that the sequences of the monitored peptides were: K[Poy]STGGK[1Ac]APR, K[Poy]STGGK[1Ac]APR-heavy, K[Poy]STGGK[Poy]APR and K[Poy]STGGK[Poy]APR-heavy. The absolute amounts of the acetylated and unmodified peptides were determined by comparing to the abundances of their SIL standards, that were added to the samples in the known concentrations, and, then used for calculation of H3K14Ac stoichiometry in CIC, CIM and MIM hMDM. Results The assay was characterized by LLOD of 0.106 fmol/µL and 0.204 fmol/µL for unmodified and acetylated H3 9KSTGGKAPR17 peptides, respectively. The LLOQ was 0.5 fmol/µL and the linear range of the assay was from 0.5 to 2500 fmol/µL. The absolute abundances of the quantified peptides varied between the donors and conditions, and so did the H3K14Ac stoichiometry. This was rather attributed to the samples nature itself, as the variability of their triplicate measurements was low. Conclusions The developed LC–MS/MS assay enabled absolute quantification of H3K14Ac in exposed to Meth HIV-infected hMDM. It can be further applied determination of this PTM stoichiometry in other studies on human primary macrophages. Graphical Abstract

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Clinical Biochemistry,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3