iTRAQ-based quantitative proteomic analysis of thoracic aortas from adult rats born to preeclamptic dams

Author:

Yu Bin,Zhu Hong-Dan,Shi Xiao-Liang,Chen Pan-Pan,Sun Xiang-Mei,Xia Gui-Yu,Fang Min,Zhong Yong-Xing,Tang Xiao-Li,Zhang Tao,Pan Hai-Tao

Abstract

Abstract Background Preeclampsia and gestational hypertension can cause vascular function impairment in offspring. In our previous work, we described the protein expression profiles of umbilical artery tissues from patients with preeclampsia. Methods To gain insights into the mechanisms of vascular dysfunction in adult rats born to preeclamptic dams, we analyzed thoracic aorta tissues by using iTRAQ isobaric tags and 2D nano LC-MS/MS. Results By using the iTRAQ method, we analyzed 1825 proteins, of which 106 showed significantly different expression in the thoracic aortic. Ingenuity pathway analysis (IPA) showed that the majority of differentially expressed proteins (DEPs) were associated with cardiovascular function. Further analysis indicated that glucose-6-phosphate dehydrogenase (G6PD), which is inhibited by miR-423-5p and activated by TP53, had the strongest effect on cardiovascular function. The expression of G6PD was upregulated in thoracic aorta tissues, as confirmed by Western blotting. The expression of two other vascular function-related proteins, cysteine- and glycine-rich protein 2 (CSRP2) and tubulin alpha-4 A (TUBA4A), was upregulated, as demonstrated by mass spectrometry (MS). Conclusions Although the results require further functional validation, these data provide novel findings related to vascular function impairment in the adult offspring of preeclamptic mothers.

Funder

National Natural Science Foundation of China

Science Technology Department of Zhejiang Province

Health Commission of Zhejiang Province

Science Technology Department of Shaoxing

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Clinical Biochemistry,Molecular Biology,Molecular Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3