Glial cell proteome using targeted quantitative methods for potential multi-diagnostic biomarkers

Author:

Kang Narae,Oh Hyun Jeong,Hong Ji Hye,Moon Hyo Eun,Kim Yona,Lee Hyeon-Jeong,Min Hophil,Park Hyeonji,Lee Sang Hun,Peak Sun Ha,Jin Jonghwa

Abstract

AbstractGlioblastoma is one of the most malignant primary brain cancer. Despite surgical resection with modern technology followed by chemo-radiation therapy with temozolomide, resistance to the treatment and recurrence is common due to its aggressive and infiltrating nature of the tumor with high proliferation index. The median survival time of the patients with glioblastomas is less than 15 months. Till now there has been no report of molecular target specific for glioblastomas. Early diagnosis and development of molecular target specific for glioblastomas are essential for longer survival of the patients with glioblastomas. Development of biomarkers specific for glioblastomas is most important for early diagnosis, estimation of the prognosis, and molecular target therapy of glioblastomas. To that end, in this study, we have conducted a comprehensive proteome study using primary cells and tissues from patients with glioblastoma. In the discovery stage, we have identified 7429 glioblastoma-specific proteins, where 476 proteins were quantitated using Tandem Mass Tag (TMT) method; 228 and 248 proteins showed up and down-regulated pattern, respectively. In the validation stage (20 selected target proteins), we developed quantitative targeted method (MRM: Multiple reaction monitoring) using stable isotope standards (SIS) peptide. In this study, five proteins (CCT3, PCMT1, TKT, TOMM34, UBA1) showed the significantly different protein levels (t-test: p value ≤ 0.05, AUC ≥ 0.7) between control and cancer groups and the result of multiplex assay using logistic regression showed the 5-marker panel showed better sensitivity (0.80 and 0.90), specificity (0.92 and 1.00), error rate (10 and 2%), and AUC value (0.94 and 0.98) than the best single marker (TOMM34) in primary cells and tissues, respectively. Although we acknowledge that the model requires further validation in a large sample size, the 5 protein marker panel can be used as baseline data for the discovery of novel biomarkers of the glioblastoma.

Funder

Institute of Information & communications Technology Planning & Evaluation (IITP) grant

the National Research Foundation of Korea (NRF) grant funded by the Korea government

Korea University Grant

Bio & Medical Technology Development Program of the National Research Foundation

the National Research Foundation of Korea Grant

the Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program

Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korean government

Soonchunhyang University Research Fund; the National Research Foundation of Korea (NRF) grant funded by the Korea governmen

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Clinical Biochemistry,Molecular Biology,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3