Early detection of Ebola virus proteins in peripheral blood mononuclear cells from infected mice

Author:

Ward Michael D.,Kenny Tara,Bruggeman Ernie,Kane Christopher D.,Morrell Courtney L.,Kane Molly M.,Bixler Sandra,Grady Sarah L.,Quizon Rachel S.,Astatke Mekbib,Cazares Lisa H.ORCID

Abstract

Abstract Background Detection of viral ribo-nucleic acid (RNA) via real-time polymerase chain reaction (RT-PCR) is the gold standard for the detection of Ebola virus (EBOV) during acute infection. However, the earliest window for viral RNA detection in blood samples is 48–72 h post-onset of symptoms. Therefore, efforts to develop additional orthogonal assays using complementary immunological and serological technologies are still needed to provide simplified methodology for field diagnostics. Furthermore, unlike RT-PCR tests, immunoassays that target viral proteins and/or early host responses are less susceptible to sequence erosion due to viral genetic drift. Although virus is shed into the bloodstream from infected cells, the wide dynamic range of proteins in blood plasma makes this a difficult sample matrix for the detection of low-abundant viral proteins. We hypothesized that the isolation of peripheral blood mononuclear cells (PBMCs), which are the first cellular targets of the Ebola virus (EBOV), may provide an enriched source of viral proteins. Methods A mouse infection model that employs a mouse-adapted EBOV (MaEBOV) was chosen as a proof-of-principal experimental paradigm to determine if viral proteins present in PBMCs can help diagnose EBOV infection pre-symptomatically. We employed a liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) platform to provide both high sensitivity and specificity for the detection and relative quantitation of viral proteins in PBMCs collected during MaEBOV infection. Blood samples pooled from animals at the post-infection time-points were used to determine the viral load by RT-PCR and purify PBMCs. Results Using quantitative LC-MS/MS, we detected two EBOV proteins (vp40 and nucleoprotein) in samples collected on Day 2 post-infection, which was also the first day of detectable viremia via RT-PCR. These results were confirmed via western blot which was performed on identical PBMC lysates from each post-infection time point. Conclusions While mass spectrometry is not currently amenable to field diagnostics, these results suggest that viral protein enrichment in PBMCs in tandem with highly sensitive immunoassays platforms, could lead to the development of a rapid, high-throughput diagnostic platform for pre-symptomatic detection of EBOV infection.

Funder

Applied Physics Laboratory, Johns Hopkins University

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Clinical Biochemistry,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3