Development of an ID-LC–MS/MS method using targeted proteomics for quantifying cardiac troponin I in human serum

Author:

Asicioglu Meltem,Oztug MerveORCID,Karaguler Nevin Gul

Abstract

Abstract Background Cardiac troponin is a complex protein consisting of the three subunits I, T and C located in heart muscle cells. When the heart muscle is damaged, it is released into the blood and can be detected. Cardiac troponin I (cTnI) is considered the most reliable and widely accepted test for detecting and confirming acute myocardial infarction. However, there is no current standardization between the commercial assays for cTnI quantification. Our work aims to create a measurement procedure that is traceable to the International System of Units for accurately measuring cardiac cTnI levels in serum samples from patients. Methods The workflow begins with immobilizing anti-cTnI antibodies onto magnetic nanoparticles to form complexes. These complexes are used to isolate cTnI from serum. Next, trypsin is used to enzymatically digest the isolated cTnI. Finally, the measurement of multiple cTnI peptides is done simultaneously using isotope dilution liquid chromatography–tandem mass spectrometry (ID-LC–MS/MS). Results The maximum antibody immobilization was achieved by combining 1 mg of nanoparticles with 100 μg of antibody, resulting in an average of 59.2 ± 5.7 μg/mg of immobilized antibody. Subsequently, the anti-cTnI-magnetic nanoparticle complex was utilized to develop and validate a method for quantifying cTnI in human serum using ID-LC–MS/MS and a protein calibration approach. The analytical method was assessed regarding linearity and recovery. The developed method enables the quantification of cTnI from 0.7 to 24 μg/L (R > 0.996). The limit of quantification was 1.8 μg/L and the limit of detection was 0.6 μg/L. Intermediate precision was ≤ 9.6% and repeatability was 2.0–8.7% for all quality control materials. The accuracy of the analyzed quality control materials was between 90 and 110%. Total measurement uncertainties for target value assignment (n = 6) were found to be ≤ 12.5% for all levels. Conclusions The analytical method demonstrated high analytical performance in accurately quantifying cardiac troponin I levels in human serum. The proposed analytical method has the potential to facilitate the harmonization of cTnI results between clinical laboratories, assign target values to secondary certified reference materials and support reliable measurement of cTnI. Graphical Abstract

Funder

European Metrology Programme for Innovation and Research

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Clinical Biochemistry,Molecular Biology,Molecular Medicine

Reference36 articles.

1. Leite L, Matos P, Leon-Justel A, Espírito-Santo C, Rodríguez-Padial L, Rodrigues F, et al. High sensitivity troponins: a potential biomarkers of cardiovascular risk for primary prevention. Front Cardiovasc Med. 2022;30(9):3472.

2. Christenson RH, Duh SH, Apple FA, Nowak R, Peacock WF, Limkakeng AT, et al. Pivotal findings for a high-sensitivity cardiac troponin assay: results of the HIGH-US study. Clin Biochem. 2020;1(78):32–9.

3. Tiambeng TN, Roberts DS, Brown KA, Zhu Y, Chen B, Wu Z, et al. Nanoproteomics enables proteoform-resolved analysis of low-abundance proteins in human serum. Nat Commun. 2020;11(1):3903.

4. Wilkins E, Wilson L, Wickramasinghe K, Bhatnagar P, Leal J, Luengo-Fernandez R, et al. European cardiovascular disease statistics 2017, European Heart Network, Brussels. Eur Cardiovasc Dis Stat. 2017;34(39):3028–34.

5. Apple FS, Sandoval Y, Jaffe AS, Ordonez-Llanos J. Cardiac troponin assays: guide to understanding analytical characteristics and their impact on clinical care. Clin Chem. 2017;63:73–81.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3