Quantitative proteomics identified circulating biomarkers in lung adenocarcinoma diagnosis

Author:

Chen Hongyu,Lai Xiaoqin,Zhu Yihan,Huang Hong,Zeng Lingyan,Zhang Li

Abstract

Abstract Background Lung cancer (LC) is a common malignant tumor with a high incidence and poor prognosis. Early LC could be cured, but the 5-year-survival rate for patients advanced is extremely low. Early screening of tumor biomarkers through plasma could allow more LC to be detected at an early stage, leading to a earlier treatment and a better prognosis. Methods This study was based on total proteomic analysis and parallel reaction monitoring validation of peripheral blood from 20 lung adenocarcinoma patients and 20 healthy individuals. Furthermore, differentially expressed proteins closely related to prognosis were analysed using Kaplan–Meier Plotter and receiver operating characteristic curve (ROC) curve analysis. Results The candidate proteins GAPDH and RAC1 showed the highest connectivity with other differentially expressed proteins between the lung adenocarcinoma group and the healthy group using STRING. Kaplan–Meier Plotter analysis showed that lung adenocarcinoma patients with positive ATCR2, FHL1, RAB27B, and RAP1B expression had observably longer overall survival than patients with negative expression (P < 0.05). The high expression of ARPC2, PFKP, PNP, RAC1 was observably negatively correlated with prognosis (P < 0.05). 17 out of 27 proteins showed a high area under the curve (> 0.80) between the lung adenocarcinoma and healthy plasma groups. Among those proteins, UQCRC1 had an area under the curve of 0.960, and 5 proteins had an area under the curve from 0.90 to 0.95, suggesting that these hub proteins might have discriminatory potential in lung adenocarcinoma, P < 0.05. Conclusions These findings provide UQCRC1, GAPDH, RAC1, PFKP have potential as novel biomarkers for the early screening of lung adenocarcinoma.

Funder

the Clinical Research Incubation Project of West China Hospital of Sichuan University

the Hospital Enterprise Cooperative Clinical Research Innovation Project

the Sichuan Science and Technology Program

the National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Clinical Biochemistry,Molecular Biology,Molecular Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3