Abstract
AbstractThis paper reviews the ways in which interactions have been studied, and the findings of such studies, in science education in both face-to-face and remote laboratories. Guided by a systematic selection process, 27 directly relevant articles were analysed based on three categories: the instruments used for measuring interactions, the research findings on student interactions, and the theoretical frameworks used in the studies of student interactions. In face-to-face laboratories, instruments for measuring interactions and the characterisation of the nature of interactions were prominent. For remote laboratories, the analysis of direct interactions was found to be lacking. Instead, studies of remote laboratories were mainly concerned with their practical scope. In addition, it is found that only a limited number of theoretical frameworks have been developed and applied in the research design. Existent theories are summarised and possible theoretical frameworks that may be implemented in studies of interactions in undergraduate laboratories are proposed. Finally, future directions for research on the inter-relationship between student interactions and laboratory learning are suggested.
Publisher
Springer Science and Business Media LLC
Reference93 articles.
1. Ajaja, P. O. (2013). Coding and analysing behaviour strategies of instructors in university science laboratories to improve science teachers training. International Education Studies, 6(1), 63–73. https://doi.org/10.5539/ies.v6n1p63.
2. Aktan, B., Bohus, C. A., Crowl, L. A., & Shor, M. H. (1996). Distance learning applied to control engineering laboratories. IEEE Transactions on Education, 39(3), 320–326. https://doi.org/10.1109/13.538754.
3. American Association for the Advancement of Science (2013). Describing and measuring undergraduate STEM teaching practices. Washington, DC: https://cgsnet.org/describing-and-measuring-undergraduate-stem-teaching-practices. Retrieved 25 Sept 2019.
4. Biggs, J. B. (2011). Teaching for quality learning at university: What the student does. Maidenhead: McGraw-Hill Education (UK).
5. Blickenstaff, J. C. (2010). A framework for understanding physics instruction in secondary and college courses. Research Papers in Education, 25(2), 177–200.
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献