Investigation of Cd(II) sorption by mackinawite (FeS) under anoxic conditions

Author:

Park Minji,Lee Kwang-Sik,Ryu Jungho,Song Young-Suk,Jeong Hoon Young

Abstract

AbstractMackinawite (FeS) was investigated for cadmium ion (Cd(II)) sorption under anoxic conditions. At the surface loading of Cd(II) (i.e., [Cd(II)]0/[FeS]0) ≤ 5 mmol/g, FeS quantitatively immobilized Cd(II). Adsorption and CdS precipitation were responsible for Cd(II) uptake, with their relative importance depending on [Cd(II)]0/[FeS]0. At pH 5.5–6.0, adsorption was more important when [Cd(II)]0/[FeS]0 ≤ 0.05 mmol/g. According to energy dispersive X-ray spectroscopy, Cd(II) exhibited strong spatial correlations with S and Cl. While Cd-S correlations corresponded to CdS precipitation and/or the surface complexation of Cd(II) with sulfhydryl functional sites, Cd–Cl correlations indicated the presence of chloride-complexed Cd(II). Given the strong correlations of both pairs, the adsorbed Cd(II) was likely present in chlorosulfide forms (e.g., ≡FeS–Cd(II)–Cl). When [Cd(II)]0/[FeS]0 exceeded 0.05 mmol/g, CdS precipitation became more important. X-ray diffraction, transmission electron microscopy, and selected area electron diffraction revealed the formation of hawleyite (cubic CdS) at higher surface loadings. The Fe(II) species liberated during CdS precipitation were resorbed through adsorption at acidic pH and the formation of Fe (oxyhydr)oxides at neutral to basic pH. Given the greater stability of CdS than adsorbed Cd(II), the prevalence of the former suggests that FeS can serve as an effective reagent to remedy Cd(II) contamination under anoxic conditions. Due to its ubiquitous presence, FeS may also control the environmental fate and mobility of Cd(II) in sulfidic sediments.

Funder

Korea Institute of Geoscience and Mineral Resources

National Research Council of Science and Technology

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3