Rapid determination of S-(+)-linalool in leaf of Cinnamomum osmophloeum ct. linalool using ultrasound-assisted microextraction

Author:

Chang Ting-Kuang,Lin Chun-Ya,Chen Ying-Ju,Yeh Ting-Feng,Chang Shang-TzenORCID

Abstract

AbstractCinnamomum osmophloeum ct. linalool is one chemotype of indigenous cinnamon in Taiwan. Its leaf essential oil (LEO) and main component S-(+)-linalool both possess great anxiolytic activities. The aim of this study was to establish ultrasound-assisted microextraction (UAME) for extracting LEO from C. osmophloeum ct. linalool. The absolute content of S-(+)-linalool and chemical composition of LEO were analyzed using GC-MS and GC-FID. To obtain the optimal conditions for UAME, four parameters (ultrasonic extraction duration, power of ultrasound, times of extraction, and leaf weight of extraction) were investigated according to the S-(+)-linalool content extracted. Results showed that the optimal condition was 10 mg of leaf extracted using n-hexane in an ultrasonicator with ultrasonic power of 80 W for 1 min. Furthermore, the absolute content of S-(+)-linalool obtained by UAME (28.3 ± 0.5 mg/g leaf) was comparable with that extracted by the 30-min hydrodistillation (HD) (26.9 ± 2.7 mg/g leaf). UAME was then employed to extract S-(+)-linalool from leaves at different stages of maturity (young, semi-mature, and mature). Results indicated that only mature leaf contains large amounts of S-(+)-linalool. Of note is that the LEO extracted by UAME contains coumarin, while that extracted by HD does not. Coumarin is an important ingredient in a number of cosmetic products due to its odor-fixing properties. With UAME, the leaf of C. osmophloeum ct. linalool has potential to be used as an aromatic material for further applications. In conclusion, UAME established in the present study provides a simple and rapid method for the determination of S-(+)-linalool and chemical composition of LEO from C. osmophloeum ct. linalool.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3