Mass spectrometry-based metabolomics study for delay tomato fruit ripening by sound waves

Author:

Jeong Mi-JeongORCID,Ko Byoung Joon,Kim Joo Yeol

Abstract

AbstractTomato (Solanum lycopersicum L.) is one of the most consumed vegetables worldwide. The ripening of tomato is performed for its freshness and represented by color and gene expression. In our previous study, we performed molecular analyses on tomato ripening with and without sound-wave treatment. In the present study, we performed metabolomics analysis of ripening tomatoes with and without sound-wave treatment to expand our knowledge of tomato ripening. To achieve this goal, tomatoes at 7, 10, and 14 d of ripening were selected and analyzed via liquid chromatography–mass spectrometry (LC–MS) and gas chromatography–MS (GC–MS). A total of 33 major metabolites, including 14 LC–MS- and 19 GC–MS-derived metabolites, were assigned based on variable importance projection and p values and subjected to statistical analysis. Apparent morphology and partial least squares–discriminant analysis were consistent with the general ripening process based on color. Moreover, metabolomics analysis showed similar experimental results to those of previous studies. The quantification of metabolites with LC–MS showed decreasing levels of adenosine, tryptophan, and phytosphingosine upon sound-wave treatment. In GC–MS analysis, 4-Aminobutanoic acid and aspartic acid were decreased upon sound-wave treatment. On the other way, the quantity of malic acid, citric acid, and sucrose was increased with the treatment. The findings of this study can assist in the application of sound-wave treatment for delaying ripening in tomatoes and improving their market value.

Funder

National Research Foundation of Korea

Rural Development Administration

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3