Accelerating the computation for real-time application of the sinc function using graphics processing units

Author:

Kim Sangwoo,Lee Chulhyun

Abstract

AbstractIn magnetic resonance imaging, the fidelity of image reconstruction is an important criterion. It has been suggested that the infinite-extent sinc kernel is the ideal interpolation kernel for ensuring the reconstruction quality of non-Cartesian trajectories. However, the application of the sinc function has been limited owing to its computational overheads. Recently, graphics processing units (GPUs) have been employed as fast computation tools because of their efficient and versatile parallel computation abilities. We implemented an accelerated convolution function with the sinc kernel using GPUs computing and evaluated the reconstruction performance. The computation time was significantly improved: Computation using the proposed method was approximately 270 times faster than that on a central processing unit (CPU) and approximately 4.6 times faster than that on a CPU optimized by level-3 Basic Linear Algebra Subprograms. The images reconstructed using the fast sinc function exhibited no adverse errors at all matrix sizes (resolutions). The total reconstruction time was approximately 0.3–3 s for all matrices, indicating that the sinc function could be a practical option for image reconstruction. Ultimately, its application would present a fundamental improvement to the performance of image reconstruction, and the GPU implementation of the convolution function with the sinc kernel could resolve various challenges in image data processing.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3