Method validation and measurement uncertainty of possible thirty volatile organic compounds (VOCs) presented in the polyethylene present in bottled drinking waters sold in Turkey

Author:

Güzel BarışORCID,Canli OltanORCID

Abstract

AbstractThis study was actualized for the simultaneous determination of possible thirty VOCs presented in drinking waters in Turkey by direct injection to purge and trap (PT) gas chromatography-mass spectrometry (GC-MS). It consists of selectivity, linearity, the limit of detection (LOD) and limit of quantification (LOQ), accuracy (recovery), precision, trueness, and measurement uncertainty studies. In linearity, the values of correlation coefficients (r2) for the matrix-matched calibration curves were higher than 0.998 for all analytes. This method showed high sensitivity (LOD: 0.011–0.040 μg/L; LOQ: 0.035–0.133 μg/L), quite sufficient recovery (82.6% to 103.1%) for accuracy, and acceptable precision (intra-day recovery: 81.5–104.4%, relative standard deviation (RSD): 1.04–9.81%; inter-day recovery: 92.6–104.1%, RSD: 1.15–7.52%). All the recovery and RSD values obtained below 10% are evaluated agreeable in point of the AOAC and EURACHEM/CITAC validation guidelines. The recovery percentages of all analytes in CRM changed between 80.3 and 109.9% and the RSD (%) values for each analyte obtained below 10%. The proficiency test results were satisfactory and comparable (z score less than or equal to 2.0 is no questionable or satisfactory) to those obtained by other laboratories participating in the round. The calculated percentage of relative uncertainties for each analyte changed from 2.99 to 10.10% and the major contribution to uncertainty budget arises from the calibration curve and repeatability. Therefore, the results demonstrate that this method is applicable for the determination of possible thirty VOCs in drinking waters in routine analysis for custom laboratories.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3