Enhanced differentiation of isomeric RNA modifications by reducing the size of ions in ion mobility mass spectrometric measurements

Author:

Wang Hongzhou,Todd Daniel A.,Chiu Norman H. L.ORCID

Abstract

AbstractWith the ability to differentiate different molecular sizes, ion mobility spectrometry (IMS) has great potentials in the analysis of isomeric compounds. However, due to the lack of sensitivity and resolution, IMS has not been commonly used. To address the issue on resolution, the goals of this study are to explore a more effective way to perform IMS by reducing the size of ions prior to the IM measurements, and apply the new approach to the differentiation of isomeric RNA modifications. The size reduction of ribonucleoside ions was effectively accomplished by using the collision-induced dissociation process, in which the N-glycosidic bond in ribonucleoside was cleaved and split the ions into two parts—a smaller nucleobase ion and a neutral molecule of ribose sugar. Since the chemical group that corresponds to most of the RNA modifications makes up a relatively small part of the molecular structure of nucleobases, the differentiation of the dissociated nucleobase ions is expected to require a lower ion mobility resolution than the differentiation of bigger isomeric ribonucleoside ions. By using RNA methylation as a model in this study, the proposed method lowered the required resolution by 16% for the differentiation of 1-methyladenosine and N6-methyladenosine. Similar results were also obtained from the differentiation of methylated cytidine isomers. In comparison to the results obtained from using the conventional tandem mass spectrometric method, there was no significant loss of signals when the proposed method was used. The proposed method is expected to be applicable to other types of isomeric compounds. Also, the same approach is applicable on other IMS platforms.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3