Author:
Park Shin-Eui,Jeon Yeong-Jae,Baek Hyeon-Man
Abstract
AbstractThis study aimed to evaluate whether the use of a high-dielectric pad is effective in increasing transmit and receive sensitivity in areas of low signal intensity in the human brain at high magnetic fields and assess its usefulness in neuroimaging studies. The novelty of this study lies in the first reported use of diffusion tensor imaging (DTI) results to evaluate the effect of the pad on neuroimaging. Six volunteers underwent MR scanning using a 7 T MR system. T1-weighted images (T1w) and diffusion-weighted images (DWI) were acquired to demonstrate the benefits of a high-dielectric pad made of barium titanate (BaTiO3). For all imaging experiments, two datasets were acquired per person, one with and one without a high-dielectric pad. Enhancement of signal sensitivity in neuroimaging has been analyzed by DTI study. Higher signal intensities and spatial contrast were demonstrated in the in T1w images acquired using high-dielectric pad than in those acquired without high-dielectric pad. Especially in DTI studies, increased quantitative anisotropy (QA) signals were observed in the corticospinal tract (CST), frontopontine tract (FPT), splenium of corpus callosum (SCC), fornix (FX), inferior fronto-occipital fasciculus (IFOF), cerebellum (CB), middle cerebellar peduncle (MCP), and body of corpus callosum (BCC) (FDR < 0.05). The signal differences accounted for an overall 20% increase. A high-dielectric pad is effective in enhancing signal intensity in human brain images acquired using 7 T MRI. Our results show that the use of such pad can increase the spatial resolution, tissue contrast, and signal intensity in neuroimaging studies. These findings suggest that high-dielectric pads may provide a relatively simple and low-cost method for spatiotemporal brain imaging studies.
Funder
Korea Basic Science Institute
Bio & Medical Technology Development Program of the National Research Foundation funded by the Korea government
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry