Abstract
AbstractDispersive-micro solid phase extraction (d-µSPE) has gained increasing attention due to its convenience, effectiveness, and flexibility for sorbent selection. Among a various selection of materials, magnetic carbon nanotubes (Mag-CNTs) is a promising d-µSPE sorbent with excellent separation efficiency in addition to its high surface area and adsorption capability. In this work, two different surface-modified Mag-CNTs, Mag-CNTs-COOH and Mag-CNTs-SO3H, were developed to facilitate d-µSPE (Mag-CNTs/d-µSPE). The cyanide metabolite, 2-aminothiazoline-4-carboxylic acid (ATCA), was selected to evaluate their extraction performance using gas chromatography–mass spectrometry (GC–MS) analysis. The Mag-CNTs-COOH enabled a one-step derivatization/desorption approach in the workflow; therefore, a better overall performance was achieved. Compared to the Mag-CNTs-SO3H/d-µSPE and SPE workflow, the one-step desorption/derivatization approach improved the overall extraction efficiency and reduced solvent consumption and waste production. Both Mag-CNTs/d-µSPE workflows were validated according to ANSI/ASB 036 guidelines and showed excellent analytical performances. The limit of detection (LOD) and limit of quantitation (LOQ) of ATCA in synthetic urine were 5 and 10 ng/mL, respectively, and that in bovine blood were achieved at 10 and 60 ng/mL. The SPE method’s LOD and LOQ were also determined at 1 and 25 ng/mL in bovine blood samples. The Mag-CNTs/d-µSPE methods demonstrated great potential to extract polar and ionic metabolites from biological matrices. The extraction processes of ATCA described in this work can provide an easier-to-adopt procedure for potential routine forensic testing of the stable biomarker in cyanide poisoning cases, particularly for those cases where the cyanide detection window has passed.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry
Reference49 articles.
1. Abd Wahib SM, Wan Ibrahim WA, Sanagi MM, Kamboh MA, Abdul Keyon AS. Magnetic sporopollenin-cyanopropyltriethoxysilane-dispersive micro-solid phase extraction coupled with high performance liquid chromatography for the determination of selected non-steroidal anti-inflammatory drugs in water samples. J Chromatogr A. 2018;1532:50–7. https://doi.org/10.1016/j.chroma.2017.11.059.
2. The National Academies of Sciences, Engineering, Medicine (2019) A research agenda for transforming separation science. Washington, DC. https://doi.org/10.17226/25421.
3. Ahmadi M, Elmongy H, Madrakian T, Abdel-Rehim M. Nanomaterials as sorbents for sample preparation in bioanalysis: a review. Anal Chim Acta. 2017;958:1–21. https://doi.org/10.1016/j.aca.2016.11.062.
4. Ansell M, Lewis FAS. Review of cyanide concentrations found in human organs. Survey of literature concenrning cyanide metabolism, “normal”, nonfatal, and fatal body cyanide levels. J Forensic Med. 1970;17:148–55.
5. ANSI/ASB, Standard Practices for Method Validation in Forensic Toxicology, ANSI/ASB Standard 036, First Edition, AAFS Standards Board, Colorado Springs, CO, 2019.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献