Author:
Whelan Jamie,Banu Ionut,Luckachan Gisha E,Banu Nicoleta Doriana,Stephen Samuel,Tharalekshmy Anjana,Al Hashimi Saleh,Vladea Radu V,Katsiotis Marios S,Alhassan Saeed M
Abstract
Abstract
Background
Molybdenum sulfide (MoS2) catalysts to be used for hydrodesulfurization (HDS) processes were prepared via the reductive thermal decomposition of ammonium tetrathiomolybdate at fixed temperature (653 K) by varying decomposition times and H2 pressures. Both parameters were found to strongly influence textural and catalytic properties of the resulting MoS2 catalysts.
Methods
Nitrogen sorption, FT-IR, and XRD analyses revealed the effect of varying decomposition times (3 to 7 h) and H2 pressure (20 to 1,000 psig) on the morphology and structure of the catalysts. Dibenzothiophene (DBT) was used to assess catalytic efficiency for HDS reactions.
Results
The influence of time on specific surface was minimal at low pressures but increased at higher decomposition pressures. Vibrational energies of Mo-S bonds in FT-IR indicate that MoS2 catalysts prepared at higher pressures exhibit weaker Mo-S bonds. Analysis of XRD patterns point towards an increase in stacking and crystallite size with increasing pressure; interlayer rotation about both the a- and c-axes of the stacks was also observed. Catalytic testing results show that conversion increases at higher values of decomposition time and pressure. Partially hydrogenated products were also observed at higher pressures, and the ratio of partially to fully hydrogenated DBT was calculated as an additional measure of catalytic efficiency.
Conclusions
Decomposition time and H2 pressure during ammonium tetrathiomolybdate (ATM) thermal decomposition have a significant impact on the morphological and catalytic properties of the derived MoS2 catalysts. Samples prepared for 5 h at 1,000 psig exhibited the highest conversion of DBT and the lowest ratio of partially to fully hydrogenated products.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献