Author:
Allenspach Martina Delia,Valder Claudia,Steuer Christian
Abstract
AbstractA simple, robust, and precise method for the absolute quantification of the terpenes α-pinene, camphene, β-pinene, 3-carene, limonene, bornyl acetate, β-caryophyllene, and borneol was developed using gas chromatography coupled to a flame ionization detector (GC-FID) and validated according to the International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use. The GC-FID method shows high accuracy (91–105%) and low imprecision (< 7.6%) for all terpenes at quality control (QC) low, medium, and high level. The curves are linear with strong correlation (R2 ≥ 0.999) for all terpenes. Additionally, the relative response factor (RRF) for each terpene is calculated. The method was validated in terms of specificity, linearity, accuracy, precision, LOD, LOQ, stability tests, and carry-over. The method was successfully applied to quantify the selected terpenes in conifer-derived essential oils (CEOs). The total amount of terpenes ranged from 6.3 to 11.8 mM. Additionally, the CEOs were screened in vitro for the antibacterial activity against E. coli and S. aureus using the broth microdilution method to determine the minimum inhibitory concentration (MIC). All the CEOs showed antibacterial activity in the concentration from 0.3 to 50 μg/mL (S. aureus) and 1.2 to 50 μg/mL (E. coli), respectively. CEO14 showed the most effective antibacterial activity of the entire tested CEOs (MIC values 0.3 μg/mL (S. aureus); 1.2 μg/mL (E. coli)). Our results suggest that the terpenoid profile should be considered for a comprehensive evaluation of the antibacterial activity, as none of the single compounds seems to be fully responsible for antibacterial activity.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry
Reference33 articles.
1. Armbruster DA, Pry T. Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev. 2008;29(Suppl 1):S49–52.
2. Bagci E, Digrak M (1996) Antimicrobial activity of essential oils of some Abies (Fir) species from Turkey. Flavour Frag J 11 (4):251-256. doi:10.1002/(Sici)1099-1026(199607)11:4 < 251::Aid-Ffj577 > 3.0.Co;2-K.
3. Başer KHC, Buchbauer G (2016) Handbook of essential oils: science, technology, and applications. Second edition. edn. CRC Press, Taylor & Francis Group, Boca Raton.
4. Bassole IHN, Juliani HR. Essential oils in combination and their antimicrobial properties. Molecules. 2012;17(4):3989–4006. https://doi.org/10.3390/molecules17043989.
5. Bicchi C, Liberto E, Matteodo M, Sgorbini B, Mondello L, Zellner BD, Costa R, Rubiolo P. Quantitative analysis of essential oils: a complex task. Flavour Frag J. 2008;23(6):382–91. https://doi.org/10.1002/ffj.1905.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献