Author:
Gao Hong-ying,Wang Shu-yun,Wang Hang-yu,Li Guo-yu,Wang Li-fei,Du Xiao-wei,Han Ying,Huang Jian,Wang Jin-hui
Abstract
Abstract
Background
Zhuyeqing Liquor (ZYQL) is a famous traditional Chinese functional liquor. For quality control of ZYQL products, quantitative analysis using high-performance liquid chromatography coupled with photodiode array detector (HPLC-PDA) was undertaken.
Methods
Eighteen compounds from ZYQL were simultaneously detected and used as chemical markers in the quantitative analysis, including 3-hydroxy-4,5(R)-dimethyl-2(5H)-furanone (M1), isobiflorin (M2), vanillic acid (M3), biflorin (M4), genipin 1-O-β-d-gentiobioside (M5), 1-sinapoyl-β-d-glucopyranoside (M6), geniposide (M7), epijasmnoside A (M8), ferulic acid (M9), luteolin 8-C-β-glucopyranoside (M10), isoorientin (M11), narirutin (M12), hesperidin (M13), 6′-O-sinapoylgeniposide (M14), 3,5-dihydroxy-3′,4′,7,8-tetramethoxyl flavones (M15), 3′,4′,3,5,6,8-hexamethoxyl flavone (M16), kaempferide (M17), and tangeretin (M18).
Results
The separation by gradient elution was achieved on SHIMADZU VP-ODS column (4.6 × 150 mm, 5 μm) at 30°C with methanol (A)/0.1% phosphoric acid (B) as the mobile phase. The detection wavelengths were 254, 278, and 335 nm. The optimized HPLC method provided a good linear relation (r ≥ 0.9991 for all the target compounds), satisfactory precision (RSD values less than 1.47%) and good recovery (97.40% to 103.44%). The limits of detection ranged between 0.20 × 10−4 and 64.90 × 10−4 μg/μL for the different analytes. Furthermore, the optimum sample preparation was obtained from HPD100 column eluted with water and 95% ethanol, respectively.
Conclusions
Quality control of ZYQL products, in total seven samples and twelve parent plants, was examined by this method, and results confirmed its feasibility and reliability in practice.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry