A new approach for urinary vanillylmandelic acid determination using eVol microextraction by packed sorbent coupled to liquid chromatography-tandem mass spectrometry

Author:

Xiong XinORCID,Zhang Yuanyuan

Abstract

AbstractVanillylmandelic acid (VMA) is one of the most important catecholamine metabolites, and it is usually used to aid in diagnosis of pheochromocytoma and paraganglioma. A new digital control microextraction by packed sorbent (MEPS) procedure coupled to liquid chromatography-mass spectrometry (LC-MS/MS) method has been developed to determine VMA in human urine. We evaluated important parameters influencing MEPS efficiency, including stationary phase, extracting cycles, and sample dilution. In optimized MEPS conditions, Only 10 μL of sample volume and 3 min preparation time for one sample were needed. Chromatographic separation was achieved with a hydrophilic interaction liquid chromatography (HILIC) column using gradient elution. VMA was detected using multiple reaction monitoring (MRM) with an electrospray source operating in negative ion mode. The method was validated for linearity, limit of quantification, accuracy, imprecision, matrix effect, and interference. Linearity was 0.5–100 μg/mL for VMA. Intra-assay, inter-assay, and total imprecision were less than 9.6%. Interferences precluding quantitation of VMA in dilute-and-shoot approach were reduced significantly using a MEPS approach. Method comparison of LC-MS/MS and homogeneous enzyme immunoassay was performed, and the reference interval was established. The developed MEPS-LC-MS/MS method certainly contributes to method robustness and makes it suitable for measurement of urinary VMA in routine clinical biochemistry laboratories.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3