Author:
Gijare Medha,Chaudhari Sharmila,Ekar Satish,Garje Anil
Abstract
AbstractThe development of biosensors with innovative nanomaterials is crucial to enhance the sensing performance of as-prepared biosensors. In the present research work, we prepared copper (II) oxide (CuO) and graphene oxide (GO) composite nanofibers using the hydrothermal synthesis route. The structural and morphological properties of as-prepared GO/CuO nanofibers were analyzed using an X-ray diffractometer, field-emission scanning, energy dispersive X-ray analysis, Fourier transmission infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The results indicated GO/CuO nanofibers exhibit nanosized diameters and lengths in the order of micrometers. These GO/CuO nanofibers were employed to prepare non-enzymatic biosensors (GO/CuO nanofibers/FTO (fluorine-doped tin oxide)) modified electrodes for enhanced glucose detection. The sensing performance of the biosensors was evaluated using linear sweep voltammetry (LSV) and chronoamperometry in phosphate buffer solution (PBS). GO/CuO/FTO biosensor achieved high sensitivity of 1274.8 μA mM−1cm−2 having a linear detection range from 0.1 to 10 mM with the lower detection limit (0.13 μM). Further, the prepared biosensor showed good reproducibility repeatability, excellent selectivity, and long-time stability. Moreover, the technique used for the preparation of the GO/CuO composite is simple, rapid, cost-effective, and eco-friendly. These electrodes are employed for the detection of glucose in blood serum with RSD ~ 1.58%.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献