Coronary stent as a tubular flow heater in magnetic resonance imaging

Author:

Vrtnik Stanislav,Wencka Magdalena,Jelen Andreja,Kim Hae Jin,Dolinšek Janez

Abstract

Abstract Background A coronary stent is an artificial metallic tube, inserted into a blocked coronary artery to keep it open. In magnetic resonance imaging (MRI), a stented person is irradiated by the radio-frequency electromagnetic pulses, which induce eddy currents in the stent that produce Joule (resistive) heating. The stent in the vessel is acting like a tubular flow heater that increases the temperature of the vessel wall and the blood that flows through it, representing a potential hazard for the stented patient. Methods Heating of a metallic coronary stent in MRI was studied theoretically and experimentally. An analytical theoretical model of the stent as a tubular flow heater, based on the thermodynamic law of heat conduction, was developed. The model enables to calculate the time-dependent stent’s temperature during the MRI examination, the increase of the blood temperature passing through the stent and the distribution of the temperature in the vessel wall surrounding the stent. The model was tested experimentally by performing laboratory magnetic resonance heating experiments on a non-inserted stainless-steel coronary stent in the absence of blood flow through it. The model was then used to predict the temperature increase of the stainless-steel coronary stent embedded in a coronary artery in the presence of blood flow under realistic MRI conditions. Results The increase of the stent’s temperature and the blood temperature were found minute, of the order of several tenths of a degree, because the blood flow efficiently cools the stent due to a much larger heat capacity of the blood as compared to the heat capacity of the stent. However, should the stent in the vessel become partially re-occluded due to the restenosis problem, where the blood flow through the stent is reduced, the stent’s temperature may become dangerously high. Conclusions In the normal situation of a fully open (unoccluded) stent, the increase of the stent temperature and the blood temperature exiting the stent were found minute, of less than 1°C, so that the blood flow efficiently cools the stent. However, should the problem of restenosis occur, where the blood flow through the stent is reduced, there is a risk of hazardous heating.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry

Reference18 articles.

1. Ahmed S, Shellock FG (2001) Magnetic resonance imaging safety: implications for cardiovascular patients. J Cardiovasc Magn Reson 3:171–182

2. ASM International Handbook Committee (1990) Metals handbook, vol 1, 10th edn. ASM International Handbook Committee, Ohio Park

3. Callaghan PT (1991) Principles of nuclear magnetic resonance microscopy. Clarendon Press, Oxford, p 100

4. Ducharme MB, Tikuisis P (1991) In vivo thermal conductivity of the human forearm tissues. J Appl Physiol 70:2682–2690

5. Halliday D, Resnick R, Walker J (2005) Fundamentals of Physics, 7th edn. John Wiley & Sons, New York, p 493

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3