Abnormal shadow contrast imaging for optimal objective lens condition in transmission electron microscope

Author:

Kwon Yong-Eun,Han Cheolsu,Lee Sang-Chul,Jeung Jong-Man,Lee Gaehang,Lee Tae-Yeoung,Kim Jin-GyuORCID

Abstract

Abstract Background In a transmission electron microscope (TEM), the objective lens (OL) is the most important component because the first image and diffraction pattern for a specimen are formed by applying a specific OL current and specimen height (SH). In TEM, the focal length of the OL should be controlled independently of the specimen position. Therefore, the initial conditions for OL should be determined by selecting the optimum imaging condition of the specimen based on the OL current and the specimen position. We would like to present a method for finding the optimal imaging condition for OL that can be applied to conventional or low-resolution TEM where high-resolution (HR) imaging is impossible. Findings We conducted an abnormal contrast imaging experiment using Au nanoparticles (AuNPs). Abnormal contrast imaging was obtained by artificially controlling the mechanical alignment of OL P/Ps. Abnormal contrasts (shadow contrasts) of AuNPs were observed in all images obtained for various SH and OL currents. It was confirmed that these shadow contrasts of AuNPs result from the parasitic aberration caused by imperfect mechanical alignment of the OL P/Ps. From the quantitative analysis of the images, it was found that the effects of parasitic aberration in the TEM images decreased as SH approached the optimal position in the OL P/P. Conclusion We examined the relationship of SH and OL current using the abnormal contrast imaging technique. The standard OL current and optimal SH were determined with OL condition minimizing the shadow contrast of images. The experimentally determined optimal SH at standard OL current in our specially designed OL system differed from that of the well-known asymmetry OL system. Therefore, it is essential to examine the optimum conditions from a practical perspective. Consequently, our abnormal contrast imaging method, which can be analyzed even in conventional imaging without HR-TEM performance, can help optimize the OL conditions during the manufacturing stage of the TEM instrument.

Funder

Korea Basic Science Institute

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry

Reference11 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3