Author:
Yasnó Juan P.,Conconi Susana,Visintin Arnaldo,Suárez Gustavo
Abstract
AbstractNon-isothermal reaction mechanism and kinetic analysis for the synthesis of monoclinic lithium zirconate (m-Li2ZrO3) were investigated by processing of TG-DTA, along with XRD, DLS, and HRTEM. For this purpose, the solid-state reaction of Li2CO3 with ZrO2 was carried out by TG-DTA at different heating rates (10, 20, and 30 °C/min) from room temperature to 1100 °C. The thermal data was used to calculate the kinetic parameters by two types of isoconversional methods: Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS). The reaction mechanism was determined by the model-fitting method, applying the Coats-Redfern (CR) approximation to the different solid-state reaction models. The results confirmed the formation of pure m-Li2ZrO3, consists of semispherical particles of about 490 nm, using a very short reaction time. The average activation energy obtained by FWO and KAS methods were 274.73 and 272.50 kJ/mol, respectively. It was found that the formation of m-Li2ZrO3 from Li2CO3 with ZrO2 is governed by the three-dimensional diffusion mechanism. Based on these results, a microscopic reaction model of the formation of m-Li2ZrO3 was proposed.
Funder
Consejo Nacional de Investigaciones Científicas y Técnicas
Agencia Nacional de Promoción Científica y Tecnológica
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献