Structural stability of Cutibacterium acnes acyl carrier protein studied using CD and NMR spectroscopy

Author:

Jang Ahjin,Cheon Dasom,Hwang Eunha,Kim YangmeeORCID

Abstract

AbstractTo survive in diverse environments, bacteria adapt by changing the composition of their cell membrane fatty acids. Compared with aerobic bacteria, Cutibacterium acnes has much greater contents of branched-chain fatty acids (BCFAs) in the cell membrane, which helps it survive in anaerobic environments. To synthesize BCFAs, C. acnes acyl carrier protein (CaACP) has to transfer growing branched acyl intermediates from its hydrophobic cavity to fatty acid synthases. CaACP contains an unconserved, distinctive Cys50 in its hydrophobic pocket, which corresponds to Leu in other bacterial acyl carrier proteins (ACPs). Herein, we investigated the substrate specificity of CaACP and the importance of Cys50 in its structural stability. We mutated Cys50 to Leu (C50L mutant) and measured the melting temperatures (Tms) of both CaACP and the C50L mutant by performing circular dichroism experiments. The Tm of CaACP was very low (49.6 °C), whereas that of C50L mutant was 55.5 °C. Hydrogen/deuterium exchange experiments revealed that wild-type CaACP showed extremely fast exchange rates within 50 min, whereas amide peaks of the C50L mutant in the heteronuclear single quantum coherence spectrum remained up to 200 min, thereby implying that Cys50 is the key residue contributing to the structural stability of CaACP. We also monitored chemical shift perturbations upon apo to holo, apo to butyryl, and apo to isobutyryl conversion, confirming that CaACP can accommodate isobutyryl BCFAs. These results provide a preliminary understanding into the substrate specificity of CaACPs for the production of BCFAs necessary to maintain cell membrane fluidity under anaerobic environments.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Materials Science,General Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3