Follicular stage-dependent regulation of apoptosis and steroidogenesis by prohibitin in rat granulosa cells

Author:

Wang Qi,Leader Arthur,Tsang Benjamin K

Abstract

Abstract Background Follicular growth and atresia are tightly regulated processes, which involve the participation of endocrine, autocrine and paracrine factors at the cellular level. Prohibitin (PHB) is a multifunctional intracellular protein playing an important role in the regulation of proliferation, apoptosis and differentiation. Here we examined the expression of PHB and its regulation by FSH in vitro and studied the role of PHB in the regulation of apoptosis and steroidogenesis in response to the apoptosis inducer staurosporine (STS) and to FSH, respectively. Methods Undifferentiated and differentiated granulosa cells were collected from diethylstilbestrol (DES)- and equine chronic gonadotropin (eCG)-primed immature rats, respectively and then cultured with various treatments (FSH, adenovirus infection, STS) according to experimental design. The apoptosis rate, the production of estradiol and progesterone, and the expression of distinct proteins (PHB, caspase-3, phospho- and total Akt) were assessed. Results PHB is anti-apoptotic and its action is dependent on the differentiated state of the granulosa cells. Data from gain- and loss-of-function experiments demonstrate that PHB inhibited STS-induced caspase-3 cleavage and apoptosis in undifferentiated granulosa cells, but was ineffective in differentiated cells. In contrast, PHB suppresses FSH-induced steroidogenesis and this response is evident irrespective of the differentiated state of granulosa cells. Conclusion These findings suggest that PHB regulates granulosa cell apoptosis and steroidogenesis in a follicular stage-dependent manner and that the dysregulation of PHB expression and action may be relevant to ovarian dysfunction.

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynecology,Oncology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3