Identification and characterization of a spontaneous ovarian carcinoma in Lewis rats

Author:

Sharrow Allison C,Ronnett Brigitte M,Thoburn Christopher J,Barber James P,Giuntoli Robert L,Armstrong Deborah K,Jones Richard J,Hess Allan D

Abstract

Abstract Background Ovarian carcinoma is the fourth most common cause of death from cancer in women. Limited progress has been made toward improving the survival rate of patients with this disease in part because of the lack of a good animal model. We present here a model of spontaneous ovarian carcinoma arising in a normal Lewis rat. Methods A spontaneously occurring tumor of the left ovary was found in a normal Lewis rat during necropsy, which was sectioned for histological examination and placed into single cell suspension. Tumor cells were passaged in vivo by intraperitoneal injection into immunocompetent Lewis rats, and in vitro culture resulted in generation of a cell line. Tumor cells were examined by flow cytometry for expression of estrogen receptor α, progesterone receptor, androgen receptor, her-2/neu, epithelial cell adhesion molecule, and CA125. β-catenin expression and cellular localization was assessed by immunocytochemistry. RNA was harvested for gene expression profiling and studying the expression of cytokines. Results The tumor, designated FNAR, could be serially transplanted into Lewis rats and propagated as a cell line in vitro, maintaining the properties of the original tumor. The FNAR cells displayed striking morphologic similarities to human ovarian carcinoma, resembling the endometrioid carcinoma subtype of surface epithelial neoplasms. The cells expressed estrogen receptor α, progesterone receptor, androgen receptor, her-2/neu, epithelial cell adhesion molecule, CA125, and nuclear β-catenin. A gene expression profile showed upregulation of a number of genes that are also upregulated in human ovarian carcinoma. Conclusion This reliable model of ovarian carcinoma should be helpful in better understanding the biology of the disease as well as the development of novel treatment strategies.

Publisher

Springer Science and Business Media LLC

Subject

Obstetrics and Gynaecology,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3